首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵广  张扬建 《生态学报》2023,43(20):8493-8503
工业革命以来,大气CO2浓度持续上升,升高的CO2浓度会改变植物光合产物积累、土壤碳库的碳输入和碳输出过程,进而通过影响有机碳组成和周转特征来调控土壤碳库动态变化。土壤碳库是陆地生态系统碳库的重要组成部分,其碳储量的微小变化都会对大气CO2浓度和气候变化产生巨大影响。但目前关于CO2浓度升高对土壤碳库动态和稳定性的影响还不清楚,很大程度上限制了预测陆地生态系统碳循环对气候变化的反馈。系统综述国内外大气CO2浓度升高对植被生产力、植被碳输入和土壤碳库影响的研究进展,旨在揭示土壤碳库物理、化学组成以及周转特征对CO2浓度升高的响应过程和机理,探讨CO2升高情境下土壤微生物特征对土壤碳库稳定性的影响和驱动机制,为深入理解全球变化下的土壤碳循环特征提供理论支撑。  相似文献   

2.
土壤有机碳和氮分解对温度变化的响应趋势与研究方法   总被引:2,自引:0,他引:2  
吴建国 《应用生态学报》2007,18(12):2896-2904
总结了土壤中碳和氮贮量与温度的关系、土壤碳和氮分解对温度时空差异和直接加热升温的响应,以及土壤碳和氮分解对低温冻结及冻融循环的响应趋势,讨论了其研究方法的误差和不确定性,并对今后的研究提出了一些建议.气候变暖在短期内将使土壤碳和氮分解加速并引起CO2释放量增加,而长期过程中却并不一定会引起土壤碳和氮分解加速.合理解释不同研究结果的差异,除了需要系统分析土壤碳和氮分解对温度变化响应的机制外,还需要充分认识土壤碳和氮分解对温度变化响应的长期过程和短期过程的差异,以及研究方法、植被、土壤和气候等因素的影响.  相似文献   

3.
The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot) and stand age (a). The authors of that study concluded that the length of the growing season (lgs) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re‐analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum‐likelihood model selection, independent‐effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot, both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale.  相似文献   

4.
Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon (14C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is ∼0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-14C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1–2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).  相似文献   

5.
We present results from modelling studies, which suggest that, at most, only about 10–20% of recently observed soil carbon losses in England and Wales could possibly be attributable to climate warming. Further, we present reasons why the actual losses of SOC from organic soils in England and Wales might be lower than those reported.  相似文献   

6.
气候变化对陆地生态系统土壤有机碳储量变化的影响   总被引:6,自引:1,他引:6  
通过研究气候变化对土壤有机碳储藏的影响,对预测未来气候变化下土壤有机碳动态变化与深入理解陆地生态系统变化和气候变化之间的相互作用有着极其重要的意义。本文归纳了土壤类型法、模型模拟法等途径对土壤有机碳储量估算的结果并分析它们各自的不确定性,综述了气候变化对土壤碳贮藏影响机理的研究与相应过程模拟的模型研究进展,并综合分析了当前研究中还存在的问题与不足。  相似文献   

7.
    
Climate projection requires an accurate understanding for soil organic carbon (SOC) decomposition and its response to warming. An emergent view considers that environmental constraints rather than chemical structure alone control SOC turnover and its temperature sensitivity (i.e., Q10), but direct long-term evidence is lacking. Here, using compound-specific radiocarbon analysis of soil profiles along a 3300-km grassland transect, we provide direct evidence for the rapid turnover of lignin-derived phenols compared with slower-cycling molecular components of SOC (i.e., long-chain lipids and black carbon). Furthermore, in contrast to the slow-cycling components whose turnover is strongly modulated by mineral association and exhibits low Q10, lignin turnover is mainly regulated by temperature and has a high Q10. Such contrasts resemble those between fast-cycling (i.e., light) and mineral-associated slow-cycling fractions from globally distributed soils. Collectively, our results suggest that warming may greatly accelerate the decomposition of lignin, especially in soils with relatively weak mineral associations.  相似文献   

8.
王兴昌  王传宽 《生态学报》2015,35(13):4241-4256
全球气候变化与森林生态系统碳循环息息相关,定量评估森林碳收支是生态系统与全球变化研究的重要任务。30年来森林生态系统碳循环研究已经取得了长足的进展,但全球和区域森林碳收支仍然存在很大的不确定性。这一方面与森林生态系统本身的复杂性有关,另一方面也与具体研究方法有关。评述了森林生态系统碳循环的基本概念和主要野外测定方法,为我国森林生态系统碳循环研究提供可参考的方法论。从生态系统碳浓度、密度、通量、分配和周转5个方面回顾了碳循环相关概念,指出碳浓度和碳储量是对碳库的静态描述,而碳通量和碳周转是对碳库的动态描述。净初级生产力是测量最普遍的碳通量组分,但大多数情况下因忽略了一些细节而被系统低估。普遍使用的净生态系统生产力,由于没有包含非CO2形式的水文、气象和干扰过程产生的碳通量,通常情况下高于生态系统净碳累积速率。在详细介绍碳通量组分的基础上,改进了森林生态系统碳循环的概念模型。重点讨论了碳通量的3种地面实测方法:测树学方法、箱法和涡度协方差法,并指出了其注意事项和不确定性来源。针对当前碳循环研究的突出问题,建议从4个方面减小碳循环测定的不确定性:(1)恰当运用生物量方程估算乔木生物量;(2)尽可能全面测定生态系统碳组分;(3)给出碳通量估算值的不确定性;(4)多种途径交互验证。  相似文献   

9.
  总被引:1,自引:0,他引:1  
Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that grassland C sequestration has a strong potential to partly mitigate the GHG balance of ruminant production systems. However, as soil C sequestration is both reversible and vulnerable to disturbance, biodiversity loss and climate change, CH4 and N2O emissions from the livestock sector need to be reduced and current SOC stocks preserved.  相似文献   

10.
Accounting for CO2 fluxes by determining changes in stocks of soil carbon (C) as a result of land use change is an option for complying nations under the Kyoto Protocol. The 1996 IPCC guidelines for C accounting recommend that soil C stocks to a depth of 30 cm be used in such accounting. However, the soil bulk density often changes with land use and the soil C per unit ground area to a fixed depth will also change even without any change in the mass fraction of C in dry soil. This problem will generally arise when soil C accounting is taken to a fixed depth (i.e. uses ‘spatial coordinates’). For accuracy in determining the land use change effects on soil C, soil sampling should be referred to a fixed dry soil mass per unit ground area (i.e. use ‘cumulative mass coordinates’). There has been intermittent literature‐discussion about this issue over several decades. Methods to accomplish C accounting on a mass coordinate basis, none of them accurate or efficient, have been suggested. Here, we propose a simple, accurate methodology for determining soil C stocks using cumulative mass coordinates, which does not involve repeat sampling trips, nominal specification of the location of boundaries between soil horizons, or independent sampling for determining soil bulk densities. Each core is taken a little (say 10 cm) below the nominal mass/depth required and the retrieved core is sliced into two at a point a little above the nominal mass/depth (say 10 cm above). An accurate determination of the depth of the core or slice is not needed, but an accurate determination of the dry mass of soil above and below the slice‐point is required. Linear interpolation between these two measurements is then used to estimate the cumulative soil C per unit ground area to the target dry soil mass per unit ground area. Even though this method eliminates the need for reporting soil bulk densities for C accounting, it is urged that the bulk densities and density changes still be routinely reported. This is because such information is of fundamental importance for understanding and predicting the movement of fluids and substances carried in them within the soil and between the soil and the environment. Hence, these data are likely to be of fundamental importance in developing our future understanding and predictive capacity of soil C changes with land use change.  相似文献   

11.
    
River transport of dissolved organic carbon (DOC) to the ocean is a crucial but poorly quantified regional carbon cycle component. Large uncertainties remaining on the riverine DOC export from China, as well as its trend and drivers of change, have challenged the reconciliation between atmosphere-based and land-based estimates of China's land carbon sink. Here, we harmonized a large database of riverine in-situ measurements and applied a random forest model, to quantify riverine DOC fluxes (FDOC) and DOC concentrations (CDOC) in rivers across China. This study proposes the first DOC modeling effort capable of reproducing well the magnitude of riverine CDOC and FDOC, as well as its trends, on a monthly scale and with a much wider spatial distribution over China compared to previous studies that mainly focused on annual-scale estimates and large rivers. Results show that over the period 2001–2015, the average CDOC was 2.25 ± 0.45 mg/L and average FDOC was 4.04 ± 1.02 Tg/year. Simultaneously, we found a significant increase in FDOC (+0.044 Tg/year2, p = .01), but little change in CDOC (−0.001 mg/L/year, p > .10). Although the trend in CDOC is not significant at the country scale, it is significantly increasing in the Yangtze River Basin and Huaihe River Basin (0.005 and 0.013 mg/L/year, p < .05) while significantly decreasing in the Yellow River Basin and Southwest Rivers Basin (−0.043 and −0.014 mg/L/year, p = .01). Changes in hydrology, play a stronger role than direct impacts of anthropogenic activities in determining the spatio-temporal variability of FDOC and CDOC across China. However, and in contrast with other basins, the significant increase in CDOC in the Yangtze River Basin and Huaihe River Basin is attributable to direct anthropogenic activities. Given the dominance of hydrology in driving FDOC, the increase in FDOC is likely to continue under the projected increase in river discharge over China resulting from a future wetter climate.  相似文献   

12.
  总被引:25,自引:0,他引:25  
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

13.
    
Characterization of turnover times of fine roots is essential to understanding patterns of carbon allocation in plants and describing forest C cycling. We used the rate of decline in the ratio of 14C to 12C in a mature hardwood forest, enriched by an inadvertent 14C pulse, to investigate fine-root turnover and its relationship with fine-root diameter and soil depth. Biomass and Delta14C values were determined for fine roots collected during three consecutive winters from four sites, by depth, diameter size classes (< 0.5 or 0.5-2 mm), and live-or-dead status. Live-root pools retained significant 14C enrichment over 3 yr, demonstrating a mean turnover time on the order of years. However, elevated Delta14C values in dead-root pools within 18 months of the pulse indicated an additional component of live roots with short turnover times (months). Our results challenge assumptions of a single live fine-root pool with a unimodal and normal age distribution. Live fine roots < 0.5 mm and those near the surface, especially those in the O horizon, had more rapid turnover than 0.5-2 mm roots and deeper roots, respectively.  相似文献   

14.
当前人类活动的加剧显著地影响着全球大气循环的格局。大气循环的多个模型均预测未来全球气候变化的显著特征是极端降水事件和极端干旱事件发生的频率会显著增加。水分是干旱、半干旱区草原植物生长发育的限制性资源, 而草原生态系统是陆地生态系统中对降水格局变化非常敏感的系统。但是, 关于极端降水事件和极端干旱事件对草原生态系统结构和功能的影响还是以分散的个案研究为主, 甚至关于极端气候事件的定义迄今也不尽相同。为此, 该文在分析极端气候事件定义及其研究方法的基础上, 总结了极端降水事件和极端干旱事件对草原生态系统土壤水分和养分状况、植物生长发育和生理特性、群落结构、生产力和碳循环过程的影响, 并提出了未来极端气候事件研究中应重点关注的5个重要方向, 以及控制试验研究的2个关键科学问题, 对开展全球变化背景下草原生态系统对极端气候事件响应机制的研究具有指导意义。  相似文献   

15.
用严重酸化的挪威云杉林的枯落物和矿质土壤,研究了温度和含水量对有机质分解过程中重量和气态的影响。在为期1a的室内试验期间,没有元素的输入,淋失和植物根系吸收。实验分3个温度处理的4个水分处理,在有利条件下,枯落物未分解层OL的重量损失速率是半分解层OF的2倍和已分解是OH的5-6倍,矿质土壤的损失速率小于枯落物层。  相似文献   

16.
红壤稻田生态系统有机物料循环对土壤有机碳转化的影响   总被引:6,自引:1,他引:6  
通过对12年田间定位试验数据的分析,研究了红壤稻田生态系统有机物料循环再利用对土壤有机碳积累的贡献及其对转化的影响。结果表明,红壤稻田生态系统有机物料循环再利用可促进土壤有机碳的积累、改善腐殖质组分和改良有机质品质。红壤稻田生态系统内有机物料循环再利用,土壤有机碳的年增速率最大可达到0.37 g.kg-1;12年间易氧化有机碳最大增量达到3.8 g.kg-1,胡敏酸和富里酸最大增量分别达到3.06和1.63 g.kg-1。预测结果显示,有机物料循环再利用红壤稻田生态系统土壤有机碳50年内可提高8.3~18.9 g.kg-1,增长率达到62.0%~140.7%。  相似文献   

17.
Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO2 uptake by mesocosms in early dawn. However, a 3°C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration.  相似文献   

18.
Soil organic carbon (SOC) was partitioned between unprotected and protected pools in six forests along an elevation gradient in the southern Appalachian Mountains using two physical methods: flotation in aqueous CaCl2 (1.4 g/mL) and wet sieving through a 0.053 mm sieve. Both methods produced results that were qualitatively and quantitatively similar. Along the elevation gradient, 28 to 53% of the SOC was associated with an unprotected pool that included forest floor O-layers and other labile soil organic matter (SOM) in various stages of decomposition. Most (71 to 83%) of the C in the mineral soil at the six forest sites was identified as protected because of its association with a heavy soil fraction (> 1.4 g/mL) or a silt-clay soil fraction. Total inventories of SOC in the forests (to a depth of 30 cm) ranged from 384 to 1244 mg C/cm2.The turnover time of the unprotected SOC was negatively correlated (r = –0.95, p < 0.05) with mean annual air temperature (MAT) across the elevation gradient. Measured SOC inventories, annual C returns to the forest floor, and estimates of C turnover associated with the protected soil pool were used to parameterize a simple model of SOC dynamics. Steady-state predictions with the model indicated that, with no change in C inputs, the low- (235–335 m), mid- (940–1000 m), and high- (1650–1670 m) elevation forests under study might surrender 40 to 45% of their current SOC inventory following a 4°C increase in MAT. Substantial losses of unprotected SOM as a result of a warmer climate could have long-term impacts on hydrology, soil quality, and plant nutrition in forest ecosystems throughout the southern Appalachian Mountains.  相似文献   

19.
    
  1. Stream ecosystem metabolism integrates production and respiration of organic matter and plays a fundamental role in the global carbon (C) cycle. Several studies have identified distal and proximal physical controls, for example, land use and transient storage, or the effects of water chemistry, that is, organic matter and nutrient availability, on stream metabolism. In parallel, research on organic matter quality has identified conspicuous gradients of chemical composition, yet mostly without demonstrating any functional implications.
  2. We hypothesise that organic matter holds a key position in a more comprehensive causal framework of stream ecosystem metabolism, and that a concurrent study can improve mechanistic understanding. Specifically, we here postulate that dissolved organic matter (DOM) quality, that is, its chemical composition, acts as a control of ecosystem respiration (ER) as much as it is a result of gross primary production (GPP). As such, DOM quality likely forms a central link between land use and stream metabolism, besides known physical controls including transient storage and light availability.
  3. To examine these hypotheses, we studied 33 streams in north‐eastern Austria, a region with diverse land use ranging from semi‐natural, forested areas to agricultural areas and settlements. We analysed DOM composition by absorbance and fluorescence spectroscopy, including modelling excitation–emission matrices with parallel factor analysis. We then opposed these data to GPP and ER estimated by fitting a metabolism model to single‐station diurnal oxygen records.
  4. Structural equation modelling revealed land use as a control on light conditions, DOM composition and concentration and nutrient concentrations, which together ultimately shaped GPP and ER. In particular, humified, coloured and aromatic DOM of predominantly terrestrial origin was prevalent in coniferous forest catchments and increased stream ER. Agricultural and urban areas enriched streams with phosphorous and nitrogen, which increased ER and GPP. Besides nutrients, GPP seemed to be weakly correlated with light availability and – in contrast to our hypothesis – left only a weak imprint on DOM composition.
  5. Land‐use change is rated as the most pervasive human influence on natural ecosystems and our results highlight its impact on aquatic GPP and ER in streams. To understand the role of inland waters in the global C cycle will require mechanistic understanding of ecosystem metabolism, which notably includes organic matter quality as a hitherto underappreciated key player.
  相似文献   

20.
Soil processes in high-latitude regions during winter are important contributors to global carbon circulation, but our understanding of the mechanisms controlling these processes is poor and observed temperature response coefficients of CO2 production in frozen soils deviate markedly from thermodynamically predicted responses (sometimes by several orders of magnitude). We investigated the temperature response of CO2 production in 23 unfrozen and frozen surface soil samples from various types of boreal forests and peatland ecosystems and also measured changes in water content in them after freezing. We demonstrate that deviations in temperature responses at subzero temperatures primarily emanates from water deficiency caused by freezing of the soil water, and that the amount of unfrozen water is mainly determined by the quality of the soil organic matter, which is linked to the vegetation cover. Factoring out the contribution of water limitation to the CO2 temperature responses yields response coefficients that agree well with expectations based on thermodynamic theory concerning biochemical temperature responses. This partitioning between a pure temperature response and the effect of water availability on the response of soil CO2 production at low temperatures is crucial for a thorough understanding of low-temperature soil processes and for accurate predictions of C-balances in northern terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号