首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Riparian ecosystems in the 21st century are likely to play a critical role in determining the vulnerability of natural and human systems to climate change, and in influencing the capacity of these systems to adapt. Some authors have suggested that riparian ecosystems are particularly vulnerable to climate change impacts due to their high levels of exposure and sensitivity to climatic stimuli, and their history of degradation. Others have highlighted the probable resilience of riparian ecosystems to climate change as a result of their evolution under high levels of climatic and environmental variability. We synthesize current knowledge of the vulnerability of riparian ecosystems to climate change by assessing the potential exposure, sensitivity, and adaptive capacity of their key components and processes, as well as ecosystem functions, goods and services, to projected global climatic changes. We review key pathways for ecological and human adaptation for the maintenance, restoration and enhancement of riparian ecosystem functions, goods and services and present emerging principles for planned adaptation. Our synthesis suggests that, in the absence of adaptation, riparian ecosystems are likely to be highly vulnerable to climate change impacts. However, given the critical role of riparian ecosystem functions in landscapes, as well as the strong links between riparian ecosystems and human well-being, considerable means, motives and opportunities for strategically planned adaptation to climate change also exist. The need for planned adaptation of and for riparian ecosystems is likely to be strengthened as the importance of many riparian ecosystem functions, goods and services will grow under a changing climate. Consequently, riparian ecosystems are likely to become adaptation ‘hotspots’ as the century unfolds.  相似文献   

2.
Regrowing forests on cleared land is a key strategy to achieve both biodiversity conservation and climate change mitigation globally. Maximizing these co‐benefits, however, remains theoretically and technically challenging because of the complex relationship between carbon sequestration and biodiversity in forests, the strong influence of climate variability and landscape position on forest development, the large number of restoration strategies possible, and long time‐frames needed to declare success. Through the synthesis of three decades of knowledge on forest dynamics and plant functional traits combined with decision science, we demonstrate that we cannot always maximize carbon sequestration by simply increasing the functional trait diversity of trees planted. The relationships between plant functional diversity, carbon sequestration rates above ground and in the soil are dependent on climate and landscape positions. We show how to manage ‘identities’ and ‘complementarities’ between plant functional traits to achieve systematically maximal cobenefits in various climate and landscape contexts. We provide examples of optimal planting and thinning rules that satisfy this ecological strategy and guide the restoration of forests that are rich in both carbon and plant functional diversity. Our framework provides the first mechanistic approach for generating decision‐makingrules that can be used to manage forests for multiple objectives, and supports joined carbon credit and biodiversity conservation initiatives, such as Reducing Emissions from Deforestation and forest Degradation REDD+. The decision framework can also be linked to species distribution models and socio‐economic models to find restoration solutions that maximize simultaneously biodiversity, carbon stocks, and other ecosystem services across landscapes. Our study provides the foundation for developing and testing cost‐effective and adaptable forest management rules to achieve biodiversity, carbon sequestration, and other socio‐economic co‐benefits under global change.  相似文献   

3.
Urban greenspace has gained considerable attention during the last decades because of its relevance to wildlife conservation, human welfare, and climate change adaptation. Biodiversity loss and ecosystem degradation worldwide require the formation of new concepts of ecological restoration and rehabilitation aimed at improving ecosystem functions, services, and biodiversity conservation in cities. Although relict sites of natural and semi-natural ecosystems can be found in urban areas, environmental conditions and species composition of most urban ecosystems are highly modified, inducing the development of novel and hybrid ecosystems. A consequence of this ecological novelty is the lack of (semi-) natural reference systems available for defining restoration targets and assessing restoration success in urban areas. This hampers the implementation of ecological restoration in cities. In consideration of these challenges, we present a new conceptual framework that provides guidance and support for urban ecological restoration and rehabilitation by formulating restoration targets for different levels of ecological novelty (i.e., historic, hybrid, and novel ecosystems). To facilitate the restoration and rehabilitation of novel urban ecosystems, we recommend using established species-rich and well-functioning urban ecosystems as reference. Such urban reference systems are likely to be present in many cities. Highlighting their value in comparison to degraded ecosystems can stimulate and guide restoration initiatives. As urban restoration approaches must consider local history and site conditions, as well as citizens’ needs, it may also be advisable to focus the restoration of strongly altered urban ecosystems on selected ecosystem functions, services and/or biodiversity values. Ecosystem restoration and rehabilitation in cities can be either relatively inexpensive or costly, but even expensive measures can pay off when they effectively improve ecosystem services such as climate change mitigation or recreation. Successful re‐shaping and re-thinking of urban greenspace by involving citizens and other stakeholders will help to make our cities more sustainable in the future.  相似文献   

4.
Ecosystem services are vital for humans in urban regions. However, urban development poses a great risk for the ability of ecosystems to provide these services. In this paper we first address the most important ecosystem services in functional urban regions in Finland. Well accessible and good quality recreational ecosystem services, for example, provided by urban nature, are an important part of a high-quality living environment and important for public health. Vegetation of urban regions can have a role in carbon dioxide sequestration and thus in climate change mitigation. For instance, estimates of carbon sinks can be compared to total CO2 emissions of an urban region, and the municipality can aim at both increasing carbon sinks and decreasing CO2 emissions with proper land-use planning. Large and contiguous core nature areas, smaller green areas and ecological connections between them are the essence of regional ecological networks and are essential for maintaining interconnected habitats for species and thus biological diversity. Thus, both local and regional level ecological networks are vital for maintaining ecosystem services in urban regions. The impacts of climate change coupled with land-use and land cover change will bring serious challenges for maintaining ecosystem services in urban areas. Although not yet widely used in planning practices, the ecosystem services approach can provide an opportunity for land-use planning to develop ecologically sustainable urban regions. Currently, information on ecosystem services of urban regions is lacking and there is a need to improve the knowledge base for land-use planning.  相似文献   

5.
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.  相似文献   

6.
生物多样性和生态系统服务情景模拟是指对未来生物多样性和生态系统服务变化轨迹的定量估计,二者相互关联并为长期、稳定的保护和恢复生态系统提供了重要科学依据。梳理生物多样性以及生态系统服务预测情景的核心观点,讨论基于生物多样性和生态系统服务情景模拟的保护决策支持途径,以期服务于我国生物多样性与生态系统服务预测研究的发展和深化。研究凝练结果如下:物种分布模型需要进行更规范的评价以明晰其对具体对象的适用性,生态系统预测模型亟待在关系结构的基础上嵌入更多的生态系统过程和社会经济过程,生态系统服务评估模型有必要强化对生物多样性、生态系统服务、人类福祉级联特征的刻画;全球气候变化驱动了未来区域生物多样性的大幅改变;土地利用则是陆地生态系统服务预测中的核心驱动变量。生态区划与区域尺度情景模拟、景观尺度下的生态安全格局构建、基于社会生态网络的社区适应三点重要展望方向将对基于情景模拟的我国生态系统保护决策提供重要的理论和实践支持。  相似文献   

7.
Forest ecosystems and their associated natural, cultural and economic values are highly vulnerable to climate driven changes in fire regimes. A detailed knowledge of forest ecosystem responses to altered fire regimes is a necessary underpinning to inform options for adaptive responses under climate change, as well as for providing a basis for understanding how patterns of distribution of vegetation communities that comprise montane forest ecosystems may change in the future. Unplanned consequential adaptation of both natural and human systems, i.e. autonomous adaptation, will occur without planned intervention, with potentially negative impacts on ecosystem services. The persistence of forest stands under changing fire regimes and the maintenance of the ecosystem services that they provide pivot upon underlying response traits, such as the ability to resprout, that determine the degree to which composition, structure and function are likely to change. The integration of ecosystem dynamics into conceptual models and their use in exploring adaptation pathways provides options for policy makers and managers to move from autonomous to planned adaptation responses. Understanding where autonomous adaptation provides a benefit and where it proves potentially undesirable is essential to inform adaptation choices. Plausible scenarios of ecological change can be developed to improve an understanding of the nature and timing of interventions and their consequences, well before natural and human systems autonomously adapt in ways that may be detrimental to the long‐term provision of ecosystem services. We explore the utility of this approach using examples from temperate montane forest ecosystems of southeastern Australia.  相似文献   

8.
西南生态安全格局形成机制及演变机理   总被引:4,自引:0,他引:4  
刘国华 《生态学报》2016,36(22):7088-7091
我国西南地区地形地貌复杂,生态系统多样,生物多样性丰富,是研究地表复杂过程与生态系统演变规律的关键区域,也是我国重要的生态屏障区。但是同时该区域环境复杂、生态脆弱、灾害严重,在全球气候变化背景下,人类活动和经济发展导致该区域的生态环境问题比较突出,同时区域的社会经济发展地域分异大。突出表现在区域生态系统服务功能受损,区域生态安全水平降低。如何维护区域生态安全具有重要意义。针对生态安全问题,我国已开展生态区划、生态功能区划和生态红线等工作,但在生态安全格局的形成机制、与生态系统服务耦合关系、人类活动和气候变化对生态安全格局影响及其适应、区域社会经济可持续发展等方面需要加强深入研究,在我国西南地区的开展研究西南生态安全格局形成机制及演变机理具有典型性、代表性与紧迫性。  相似文献   

9.
Environmental fluctuations, such as changes in climate, agricultural management and anthropogenic land-use patterns can affect the diversity of organisms inhabiting an area. Losses of biodiversity alter ecosystems processes, eroding their capacity to deliver ecosystem services. Dung beetles are critical ecosystem service providers, making them an ideal ecological indicator to explore the effects of land-use change on biodiversity. Dung beetles were sampled across three land-use types, in the summers of 2015 and 2016 in the Eastern Cape province, South Africa. Game ranching is regarded as a relatively low-intensity land use type. It was compared with cattle ranching (medium intensity) and dairy farming (high intensity) to examine their effect on dung beetle assemblage metrics (abundance, species richness and true Shannon diversity index), guild diversity (as nesting guilds) and spatial turnover. The intermediate grazing intensity of cattle ranching supported a higher abundance and diversity of both whole dung beetle assemblage and the nesting guilds, followed by the game ranches and then dairy farms. Differences between the sampling years were dependent on the beetle nesting guild, and largely correlated with rainfall and temperature. Cattle and game ranches shared a higher number of species than either shared with dairy farms. Whittaker's Beta-diversity index showed the highest species turnover between game ranches and dairy farms. A mix of game and cattle ranching, minimising dairy farming or restricting it to already ecological degraded sites, appears the best alternative for maintenance of dung beetle diversity and their ecosystem services. The year-to-year trends of the data were in general consistent, confirming that dung beetles are reliable ecological indicators; but also suggest that climate change that affects rainfall will result in the reduction of the abundance and diversity of this key ecological group.  相似文献   

10.
With the high rate of ecosystem change, effective systematic conservation planning must account for ongoing and imminent threats to biodiversity to ensure its persistence. Accordingly, guidance on appropriate conservation actions in the face of climate change has been accumulating. We review this guidance and bring together the key recommendations needed to successfully account for climate change impacts, relevant to the scale at which natural resource management is carried out. We discuss how the traditional conservation tools of protection and restoration need to be adjusted to be effective in the face of climate change. We highlight the conservation innovations such as moveable and temporary reserves, and Targeted Gene Flow. We build on recent work to provide critical advice for considering climate change in conservation planning. In particular, we discuss how stating explicit objectives related to climate change adaptation, quantifying uncertainty, and exploring trade-offs will better place conservation plans to meet objectives for multiple goals such as protection of species, ecosystems, geophysical diversity and ecological processes.  相似文献   

11.
Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site‐specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional‐scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management.  相似文献   

12.
重点脆弱生态区生态恢复的综合效益评估   总被引:2,自引:0,他引:2  
全球变化和人类活动的剧烈影响导致对人类福祉至关重要的生态系统功能和服务的改变,生态系统退化已成为全球面临的严重问题之一。综合评价生态恢复效益是目前衡量恢复工程实施效果的重要途径。以中国重点脆弱生态区为研究对象,选取产水、土壤保持、食物供给、固碳4项服务,构建研究区生态恢复综合效益评估指标体系,并通过Welch T方法检验恢复显著和不显著区生态系统服务指标,对比分析研究区生态恢复综合效益的变化情况。结果表明:2000年到2015年,生态恢复工程的实施使脆弱区生态系统服务整体增长20.86%;综合效益由波动变化转为稳定,并稳定在其均值0.55附近,其中喀斯特区综合效益最高,达0.75以上;生态系统类型变化主要是农田、森林、草地和聚落生态系统之间的转移,森林和草地生态系统的增加使得生态系统服务水平升高;T检验的结果表明生态恢复带来综合效益的改善和生态系统服务能力的提高。  相似文献   

13.
生态系统服务管理作为生态系统管理的优化方式,是生态学研究的前沿方向。湖泊生态系统服务管理是指综合利用生态学、经济学、社会学和管理学等学科知识,对影响湖泊生态系统结构、过程、功能的关键因子进行调控,提高湖泊生态系统服务供给水平和供给能力的过程。近年来国内外学者针对湖泊生态系统服务内涵、分类、经济价值评估等方面开展了大量研究,极大地促进了湖泊生态系统服务从认知走向管理实践。然而,现有研究在开展湖泊生态系统服务价值评估时多忽略生态系统服务受益者和生态系统特征对生态系统服务的边际影响分析,无法揭示生态系统服务空间流动和转移特征及生态系统服务时空权衡关系,制约了生态系统服务研究与管理决策和政策设计结合。在综述湖泊生态系统服务定量评估方法的基础上,认为通过生态系统服务受益者分析确定湖泊生态系统最终服务,并通过构建生态生产函数确定湖泊生态系统服务权衡关系及湖泊生态系统特征对生态系统最终服务的边际影响,是生态系统服务走向管理实践和政策设计的科学依据,可以确保生态、社会、经济可持续发展。  相似文献   

14.
城郊生态系统土壤安全:问题与挑战   总被引:2,自引:0,他引:2  
赵方凯  杨磊  陈利顶  李刚  孙龙  李守娟 《生态学报》2018,38(12):4109-4120
土壤作为地球表层系统物质和能量迁移转化的关键节点,其生态功能受到城市化快速发展的严重影响,土壤安全面临严峻的挑战。城郊生态系统受到城市和乡村的双重影响,具有复杂的景观结构和剧烈的动态变化,土壤安全问题更为突出和复杂。基于文献计量学方法,对1990—2017年发表的相关文献进行了统计,梳理和总结了城郊生态系统土壤安全研究的趋势和热点问题,对城郊生态系统中土壤安全面临的问题,及其特殊性、复杂性进行了重点论述,明确了当前快速城市化发展过程中城郊土壤安全研究面临的问题和挑战。建议今后的城郊生态系统土壤安全研究应加强区域尺度上的综合和不同城市发展模式下地区之间的比较,明确城市扩张对城郊生态系统土壤安全的影响机制;建立和完善基于"土壤安全"的城郊生态系统服务评价框架,深入研究城郊生态系统格局-过程-服务之间的关系;明确解析城郊土壤主要污染物来源及其复合污染状况,并结合区域特征,因地制宜开展科学的生态规划,优化城郊景观格局,提升城郊地区土壤安全与生态系统服务功能;明确土壤安全在城郊生态系统可持续发展目标中的重要性,建立科学合理的管理政策。  相似文献   

15.
The concept of ecosystem services – the benefits that nature provides to human''s society – has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700''s. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.  相似文献   

16.
The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS.  相似文献   

17.
面向生态系统服务的森林生态系统经营:现状、挑战与展望   总被引:16,自引:0,他引:16  
森林生态系统是地球陆地生态系统的主体,它具有很高的生物生产力和生物量以及丰富的生物多样性,对全球生态系统和人类经济社会发展起着至关重要和无可替代的作用。伴随着人口的不断增长和经济社会的迅猛发展,对森林资源和森林生态系统服务的需求不断高涨,而且人类对森林资源价值的认识也发生了很大程度的改变。推进森林资源可持续经营,增加森林总量、提高森林质量、增强生态功能,已成为中国林业可持续发展乃至推进中国生态文明建设和建设美丽中国的战略任务。本文全面综述了森林生态系统经营发展历程,分析了森林生态系统经营的现状和存在问题,在此基础上,提出整合基于生态系统管理与满足现代人类福祉对森林多重需求的新的森林生态系统经营理念,面向生态系统服务的森林生态系统经营理念是未来的发展趋势。森林经营发展战略表现为:1)从单纯的森林面积数量扩张,转变到提高单位面积的森林生产力和森林质量;2)从单一追求木材生产逐步转变为多目标经营,将森林林产品单一的经营目标转变为广泛的生态、经济和社会等多目标经营;3)森林经营重点从林分水平转变为森林景观的经营,强调森林景观的时空异质性和动态变化,权衡和协同多种生态系统的服务功能,倡导森林景观的多样性和连通性,提高森林与其它土地利用模式镶嵌构成的复合景观的可持续性和稳定性,增强森林生态系统对气候变化影响的适应能力;4)森林生态系统经营将从依赖传统经验的主观决策转变为信息化、数字化和智能化的决策,发展森林生态系统经营决策支持系统和森林景观恢复与空间经营规划系统。  相似文献   

18.
The combination of climate change and urbanization projected to occur until 2050 poses new challenges for land-use planning, not least in terms of reducing urban vulnerability to hazards from projected increases in the frequency and intensity of climate extremes. Interest in investments in green infrastructure (interconnected systems of parks, wetlands, gardens and other green spaces), as well as in restoration of urban ecosystems as part of such adaptation strategies, is growing worldwide. Previous research has highlighted the insurance value of ecosystems in securing the supply of ecosystem services in the face of disturbance and change, yet this literature neglects urban areas even though urban populations are often highly vulnerable. We revisit the insurance value literature to examine the applicability of the concept in urban contexts, illustrating it with two case studies: watersheds providing drinking water for residents of Vancouver, Canada; and private gardens ensuring connectedness between other parts of urban green infrastructure in London, UK. Our research supports the notion that investments in green infrastructure can enhance insurance value, reducing vulnerability and the costs of adaptation to climate change and other environmental change. Although we recommend that urban authorities consider the insurance value of ecosystems in their decision-making matrix, we advise caution in relying upon monetary evaluations of insurance value. We conclude by identifying actions and management strategies oriented to maintain or enhance the insurance value of urban ecosystems. Ecosystems that are themselves resilient to external disturbances are better able to provide insurance for broader social–ecological systems.  相似文献   

19.
陆地生态系统包含一系列时空连续、尺度多元且互相联系的生态学过程。由于大部分生态学过程都受到温度调控, 因此气候变暖会对全球陆地生态系统产生深远的影响。近年来, 全球变化生态学的基本科学问题之一是陆地生态系统的关键过程如何响应与适应全球气候变暖。围绕该问题, 该文梳理了近年来的研究进展, 重点关注植物生理生态过程、物候期、群落动态、生产力及其分配、凋落物与土壤有机质分解、养分循环等过程对温度升高的响应与适应机理。通过定量分析近20年来发表于主流期刊的相关论文, 展望了该领域的前沿方向, 包括物种性状对生态系统过程的预测能力, 生物地球化学循环的耦合过程, 极端高温与低温事件的响应与适应机理, 不对称气候变暖的影响机理和基于过程的生态系统模拟预测等。基于这些研究进展, 该文建议进一步研究陆地生态系统如何适应气候变暖, 更多关注我国的特色生态系统类型, 并整合实验、观测或模型等研究手段开展跨尺度的合作研究。  相似文献   

20.
Because industrial agriculture keeps expanding in Southeast Asia at the expense of natural forests and traditional swidden systems, comparing biodiversity and ecosystem services in the traditional forest–swidden agriculture system vs. monocultures is needed to guide decision making on land-use planning. Focusing on tree diversity, soil erosion control, and climate change mitigation through carbon storage, we surveyed vegetation and monitored soil loss in various land-use areas in a northern Bornean agricultural landscape shaped by swidden agriculture, rubber tapping, and logging, where various levels and types of disturbance have created a fine mosaic of vegetation from food crop fields to natural forest. Tree species diversity and ecosystem service production were highest in natural forests. Logged-over forests produced services similar to those of natural forests. Land uses related to the swidden agriculture system largely outperformed oil palm or rubber monocultures in terms of tree species diversity and service production. Natural and logged-over forests should be maintained or managed as integral parts of the swidden system, and landscape multifunctionality should be sustained. Because natural forests host a unique diversity of trees and produce high levels of ecosystem services, targeting carbon stock protection, e.g. through financial mechanisms such as Reducing Emissions from Deforestation and Forest Degradation (REDD+), will synergistically provide benefits for biodiversity and a wide range of other services. However, the way such mechanisms could benefit communities must be carefully evaluated to counter the high opportunity cost of conversion to monocultures that might generate greater income, but would be detrimental to the production of multiple ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号