共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Colicchio 《Journal of evolutionary biology》2017,30(4):664-680
Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within‐generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant–herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. 相似文献
2.
Anu Vehmaa Hedvig Hogfors Elena Gorokhova Andreas Brutemark Towe Holmborn Jonna Engström‐Öst 《Ecology and evolution》2013,3(13):4548-4557
Zooplankton are an important link between primary producers and fish. Therefore, it is crucial to address their responses when predicting effects of climate change on pelagic ecosystems. For realistic community‐level predictions, several biotic and abiotic climate‐related variables should be examined in combination. We studied the combined effects of ocean acidification and global warming predicted for year 2100 with toxic cyanobacteria on the calanoid copepod, Acartia bifilosa. Acidification together with higher temperature reduced copepod antioxidant capacity. Higher temperature also decreased egg viability, nauplii development, and oxidative status. Exposure to cyanobacteria and its toxin had a negative effect on egg production but, a positive effect on oxidative status and egg viability, giving no net effects on viable egg production. Additionally, nauplii development was enhanced by the presence of cyanobacteria, which partially alleviated the otherwise negative effects of increased temperature and decreased pH on the copepod recruitment. The interactive effects of temperature, acidification, and cyanobacteria on copepods highlight the importance of testing combined effects of climate‐related factors when predicting biological responses. 相似文献
3.
The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO2) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO2). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience. 相似文献
4.
Piero Calosi Samuel P. S. Rastrick Chiara Lombardi Heidi J. de Guzman Laura Davidson Marlene Jahnke Adriana Giangrande J?rg D. Hardege Anja Schulze John I. Spicer Maria-Cristina Gambi 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1627)
Metabolic rate determines the physiological and life-history performances of ectotherms. Thus, the extent to which such rates are sensitive and plastic to environmental perturbation is central to an organism''s ability to function in a changing environment. Little is known of long-term metabolic plasticity and potential for metabolic adaptation in marine ectotherms exposed to elevated pCO2. Consequently, we carried out a series of in situ transplant experiments using a number of tolerant and sensitive polychaete species living around a natural CO2 vent system. Here, we show that a marine metazoan (i.e. Platynereis dumerilii) was able to adapt to chronic and elevated levels of pCO2. The vent population of P. dumerilii was physiologically and genetically different from nearby populations that experience low pCO2, as well as smaller in body size. By contrast, different populations of Amphiglena mediterranea showed marked physiological plasticity indicating that adaptation or acclimatization are both viable strategies for the successful colonization of elevated pCO2 environments. In addition, sensitive species showed either a reduced or increased metabolism when exposed acutely to elevated pCO2. Our findings may help explain, from a metabolic perspective, the occurrence of past mass extinction, as well as shed light on alternative pathways of resilience in species facing ongoing ocean acidification. 相似文献
5.
Kai T. Lohbeck Ulf Riebesell Thorsten B. H. Reusch 《Proceedings. Biological sciences / The Royal Society》2014,281(1786)
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. 相似文献
6.
Steve S. Doo Aero Leplastrier Alexia Graba‐Landry Januar Harianto Ross A. Coleman Maria Byrne 《Ecology and evolution》2020,10(15):8465-8475
Concurrent anthropogenic global climate change and ocean acidification are expected to have a negative impact on calcifying marine organisms. While knowledge of biological responses of organisms to oceanic stress has emerged from single‐species experiments, these do not capture ecologically relevant scenarios where the potential for multi‐organism physiological interactions is assessed. Marine algae provide an interesting case study, as their photosynthetic activity elevates pH in the surrounding microenvironment, potentially buffering more acidic conditions for associated epiphytes. We present findings that indicate increased tolerance of an important epiphytic foraminifera, Marginopora vertebralis, to the effects of increased temperature (±3°C) and pCO2 (~1,000 µatm) when associated with its common algal host, Laurencia intricata. Specimens of M. vertebralis were incubated for 15 days in flow‐through aquaria simulating current and end‐of‐century temperature and pH conditions. Physiological measures of growth (change in wet weight), calcification (measured change in total alkalinity in closed bottles), photochemical efficiency (Fv/Fm), total chlorophyll, photosynthesis (oxygen flux), and respiration were determined. When incubated in isolation, M. vertebralis exhibited reduced growth in end‐of‐century projections of ocean acidification conditions, while calcification rates were lowest in the high‐temperature, low‐pH treatment. Interestingly, association with L. intricata ameliorated these stress effects with the growth and calcification rates of M. vertebralis being similar to those observed in ambient conditions. Total chlorophyll levels in M. vertebralis decreased when in association with L. intricata, while maximum photochemical efficiency increased in ambient conditions. Net production estimates remained similar between M. vertebralis in isolation and in association with L. intricata, although both production and respiration rates of M. vertebralis were significantly higher when associated with L. intricata. These results indicate that the association with L. intricata increases the resilience of M. vertebralis to climate change stress, providing one of the first examples of physiological buffering by a marine alga that can ameliorate the negative effects of changing ocean conditions. 相似文献
7.
The evolution of adaptive phenotypic plasticity relies on the presence of cues that enable organisms to adjust their phenotype to match local conditions. Although mostly studied with respect to nonsocial cues, it is also possible that parents transmit information about the environment to their offspring. Such ‘anticipatory parental effects’ or ‘adaptive transgenerational plasticity’ can have important consequences for the dynamics and adaptive potential of populations in heterogeneous environments. Yet, it remains unknown how widespread this form of plasticity is. Using a meta‐analysis of experimental studies with a fully factorial design, we show that there is only weak evidence for higher offspring performance when parental and offspring environments are matched compared with when they are mismatched. Estimates of heterogeneity among studies suggest that effects, when they occur, are subtle. Study features, environmental context, life stage and trait categories all failed to explain significant amounts of variation in effect sizes. We discuss theoretical and methodological reasons for the limited evidence for anticipatory parental effects and suggest ways to improve our understanding of the prevalence of this form of plasticity in nature. 相似文献
8.
Environmental sex determination in a splash pool copepod 总被引:3,自引:0,他引:3
M. J. VOORDOUW B. R. ANHOLT 《Biological journal of the Linnean Society. Linnean Society of London》2002,76(4):511-520
The sex-determining mechanism has important demographic and genetic consequences by virtue of its effect on the population sex ratio. Here we investigate the effect of temperature dependent sex determination (TSD) on the primary sex ratio of the harpacticoid copepod, Tigriopus californicus . At the two experimental temperatures (15° and 22°C) used in this study, the primary sex ratio is almost always biased in favour of males. Higher temperatures induce masculinization and the change in sex ratio is not caused by differential mortality of the sexes. The mean level of TSD in the population is small (proportion of males increases by ~5% between 15° and 22°C) because only one-third of the families actually exhibit a significant sex-ratio response while the rest of the population is insensitive to temperature. A comparison of the primary sex ratio and the level of TSD between two locations reveals few differences among populations. Finally, individuals still exhibited TSD after having been maintained under constant temperature conditions in the lab for several generations. In addition the proportion of temperature-sensitive individuals remained unchanged. This suggests that the observed level of TSD is not an artefact of testing field-captured individuals in a novel laboratory environment. At this point the adaptive significance of temperature-dependent sex determination in T. californicus remains unknown. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 511–520. 相似文献
9.
海洋酸化对海洋无脊椎动物的影响研究进展 总被引:1,自引:0,他引:1
人源二氧化碳(CO2)的大量排放,导致空气中CO2浓度越来越高,其中大约1/4至1/3被海洋吸收。过多CO2在海水中的溶解,除引起海水p H值降低外,还导致海水中碳酸盐平衡体系的变化,即"海洋酸化"现象。很多海洋无脊椎动物不但在海洋生态系统中发挥重要作用,还是重要的水产养殖种,因此具有重要的生态与经济价值。由于海洋无脊椎动物的生活史在海水中完成,因此海洋环境的变化极易对其造成影响。大量研究已证实海洋酸化能对多种海洋无脊椎动物的受精、发育、生物钙化、基因表达等生命活动产生显著影响。综述了近年来海洋酸化对海洋无脊椎动物影响研究的相关报道,归纳了其对海洋无脊椎动物不同生命活动的影响,分析了其生态学效应,探讨了现有研究在方法创新、内容拓展以及机理分析等方面存在的局限与不足,并展望了海洋酸化对海洋无脊椎动物影响研究的发展方向。 相似文献
10.
Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod,Gadus morhua 下载免费PDF全文
Flemming T. Dahlke Elettra Leo Felix C. Mark Hans‐Otto Pörtner Ulf Bickmeyer Stephan Frickenhaus Daniela Storch 《Global Change Biology》2017,23(4):1499-1510
Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO2‐driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO2) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid–base‐relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3–6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO2 and mitochondrial capacities. Elevated PCO2 stimulated MO2 at cold and intermediate temperatures, but exacerbated warming‐induced constraints on MO2, indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO2. Increased MO2 in response to elevated PCO2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO2 conditions and suggest that acclimation to elevated PCO2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change. 相似文献
11.
Ocean acidification and warming will be most pronounced in the Arctic Ocean. Aragonite shell‐bearing pteropods in the Arctic are expected to be among the first species to suffer from ocean acidification. Carbonate undersaturation in the Arctic will first occur in winter and because this period is also characterized by low food availability, the overwintering stages of polar pteropods may develop into a bottleneck in their life cycle. The impacts of ocean acidification and warming on growth, shell degradation (dissolution), and mortality of two thecosome pteropods, the polar Limacina helicina and the boreal L. retroversa, were studied for the first time during the Arctic winter in the Kongsfjord (Svalbard). The abundance of L. helicina and L. retroversa varied from 23.5 to 120 ind m?2 and 12 to 38 ind m?2, and the mean shell size ranged from 920 to 981 μm and 810 to 823 μm, respectively. Seawater was aragonite‐undersaturated at the overwintering depths of pteropods on two out of ten days of our observations. A 7‐day experiment [temperature levels: 2 and 7 °C, pCO2 levels: 350, 650 (only for L. helicina) and 880 μatm] revealed a significant pCO2 effect on shell degradation in both species, and synergistic effects between temperature and pCO2 for L. helicina. A comparison of live and dead specimens kept under the same experimental conditions indicated that both species were capable of actively reducing the impacts of acidification on shell dissolution. A higher vulnerability to increasing pCO2 and temperature during the winter season is indicated compared with a similar study from fall 2009. Considering the species winter phenology and the seasonal changes in carbonate chemistry in Arctic waters, negative climate change effects on Arctic thecosomes are likely to show up first during winter, possibly well before ocean acidification effects become detectable during the summer season. 相似文献
12.
Gretchen E. Hofmann 《Global Change Biology》2013,19(8):2536-2546
A rapidly growing body of literature documents the potential negative effects of CO2‐driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution can alter demographic responses to environmental change, ultimately affecting the likelihood of population persistence, but the capacity for adaptation will differ among populations and species. Here, we measure the capacity of the ecologically important purple sea urchin Strongylocentrotus purpuratus to adapt to OA, using a breeding experiment to estimate additive genetic variance for larval size (an important component of fitness) under future high‐pCO2/low‐pH conditions. Although larvae reared under future conditions were smaller than those reared under present‐day conditions, we show that there is also abundant genetic variation for body size under elevated pCO2, indicating that this trait can evolve. The observed heritability of size was 0.40 ± 0.32 (95% CI) under low pCO2, and 0.50 ± 0.30 under high‐pCO2 conditions. Accounting for the observed genetic variation in models of future larval size and demographic rates substantially alters projections of performance for this species in the future ocean. Importantly, our model shows that after incorporating the effects of adaptation, the OA‐driven decrease in population growth rate is up to 50% smaller, than that predicted by the ‘no‐adaptation’ scenario. Adults used in the experiment were collected from two sites on the coast of the Northeast Pacific that are characterized by different pH regimes, as measured by autonomous sensors. Comparing results between sites, we also found subtle differences in larval size under high‐pCO2 rearing conditions, consistent with local adaptation to carbonate chemistry in the field. These results suggest that spatially varying selection may help to maintain genetic variation necessary for adaptation to future OA. 相似文献
13.
14.
Differences in population vulnerability to warming are defined by spatial patterns in thermal adaptation. These patterns may be driven by natural selection over spatial environmental gradients, but can also be shaped by gene flow, especially in marine taxa with high dispersal potential. Understanding and predicting organismal responses to warming requires disentangling the opposing effects of selection and gene flow. We begin by documenting genetic divergence of thermal tolerance and developmental phenotypic plasticity. Ten populations of the widespread copepod Acartia tonsa were collected from sites across a large thermal gradient, ranging from the Florida Keys to Northern New Brunswick, Canada (spanning over 20° latitude). Thermal performance curves (TPCs) from common garden experiments revealed local adaptation at the sampling range extremes, with thermal tolerance increasing at low latitudes and decreasing at high latitudes. The opposite pattern was observed in phenotypic plasticity, which was strongest at high latitudes. No relationship was observed between phenotypic plasticity and environmental variables. Instead, the results are consistent with the hypothesis of a trade‐off between thermal tolerance and the strength of phenotypic plasticity. Over a large portion of the sampled range, however, we observed a remarkable lack of differentiation of TPCs. To examine whether this lack of divergence is the result of selection for a generalist performance curve or constraint by gene flow, we analyzed cytochrome oxidase I mtDNA sequences, which revealed four distinct genetic clades, abundant genetic diversity, and widely distributed haplotypes. Strong divergence in thermal performance within genetic clades, however, suggests that the pace of thermal adaptation can be relatively rapid. The combined insight from the laboratory physiological experiments and genetic data indicate that gene flow constrains differentiation of TPCs. This balance between gene flow and selection has implications for patterns of vulnerability to warming. Taking both genetic differentiation and phenotypic plasticity into account, our results suggest that local adaptation does not increase vulnerability to warming, and that low‐latitude populations in general may be more vulnerable to predicted temperature change over the next century. 相似文献
15.
16.
The production of the marine trace gas dimethyl sulfide (DMS) provides 90% of the marine biogenic sulfur in the atmosphere where it affects cloud formation and climate. The effects of increasing anthropogenic CO2 and the resulting warming and ocean acidification on trace gas production in the oceans are poorly understood. Here we report the first measurements of DMS‐production and data on growth, DMSP and DMS concentrations in pH‐stated cultures of the phytoplankton haptophyte Emiliania huxleyi. Four different environmental conditions were tested: ambient, elevated CO2 (+CO2), elevated temperature (+T) and elevated temperature and CO2 (+TCO2). In comparison to the ambient treatment, average DMS production was about 50% lower in the +CO2 treatment. Importantly, temperature had a strong effect on DMS production and the impacts outweighed the effects of a decrease in pH. As a result, the +T and +TCO2 treatments showed significantly higher DMS production of 36.2 ± 2.58 and 31.5 ± 4.66 μmol L?1 cell volume (CV) h?1 in comparison with the +CO2 treatment (14.9 ± 4.20 μmol L?1 CV h?1). As the cultures were aerated with an air/CO2 mixture, DMS was effectively removed from the incubation bottles so that concentration remained relatively low (3.6–6.1 mmol L?1 CV). Intracellular DMSP has been shown to increase in E. huxleyi as a result of elevated temperature and/or elevated CO2 and our results are in agreement with this finding: the ambient and +CO2 treatments showed 125 ± 20.4 and 162 ± 27.7 mmol L?1 CV, whereas +T and +TCO2 showed significantly increased intracellular DMSP concentrations of 195 ± 15.8 and 211 ± 28.2 mmol L?1 CV respectively. Growth was unaffected by the treatments, but cell diameter decreased significantly under elevated temperature. These results indicate that DMS production is sensitive to CO2 and temperature in E. huxleyi. Hence, global environmental change that manifests in ocean acidification and warming may not result in decreased DMS as suggested by earlier studies investigating the effect of elevated CO2 in isolation. 相似文献
17.
Christopher E. Cornwall Christopher D. Hepburn Christina M. McGraw Kim I. Currie Conrad A. Pilditch Keith A. Hunter Philip W. Boyd Catriona L. Hurd 《Proceedings. Biological sciences / The Royal Society》2013,280(1772)
Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH—based for the first time on pH time-series measurements within a kelp forest—would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ13C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA. 相似文献
18.
The continued emissions of anthropogenic carbon dioxide are causing progressive ocean acidification (OA). While deleterious effects of OA on biological systems are well documented in the growth of calcifying organisms, lesser studied impacts of OA include potential effects on gamete interactions that determine fertilization, which are likely to influence the many marine species that spawn gametes externally. Here, we explore the effects of OA on the signalling mechanisms that enable sperm to track egg-derived chemicals (sperm chemotaxis). We focus on the mussel Mytilus galloprovincialis, where sperm chemotaxis enables eggs to bias fertilization in favour of genetically compatible males. Using an experimental design based on the North Carolina II factorial breeding design, we test whether the experimental manipulation of seawater pH (comparing ambient conditions to predicted end-of-century scenarios) alters patterns of differential sperm chemotaxis. While we find no evidence that male–female gametic compatibility is impacted by OA, we do find that individual males exhibit consistent variation in how their sperm perform in lowered pH levels. This finding of individual variability in the capacity of ejaculates to respond to chemoattractants under acidified conditions suggests that climate change will exert considerable pressure on male genotypes that can withstand an increasingly hostile fertilization environment. 相似文献
19.
Jörn Thomsen Isabel Casties Christian Pansch Arne Körtzinger Frank Melzner 《Global Change Biology》2013,19(4):1017-1027
Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12–20 g kg?1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 μatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 μatm were observed at the surface and >3000 μatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 μatm) in comparison to a low pCO2 outer fjord station (ca. 600 μatm). In addition, mussels were able to out‐compete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus, M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification. 相似文献
20.
Hong D. Nguyen Steve S. Doo Natalie A. Soars Maria Byrne 《Global Change Biology》2012,18(8):2466-2476
Climate change driven ocean warming and acidification is potentially detrimental to the sensitive planktonic life stages of benthic marine invertebrates. Research has focused on the effects of acidification on calcifying larvae with a paucity of data on species with alternate developmental strategies and on the interactive effects of warming and acidification. To determine the impact of climate change on a conspicuous component of the intertidal fauna of southeast Australia, the development of the noncalcifying lecithotrophic larvae of the sea star Meridiastra calcar was investigated in the setting of predicted ocean warming (+2 to 4 °C) and acidification (?0.4 to 0.6 pH units) for 2100 and beyond in all combinations of stressors. Temperature and pH were monitored in the habitat of M. calcar to place experiments in context with current environmental conditions. There was no effect of temperature or pH on cleavage stage embryos but later development (gastrula‐larvae) was negatively effected by a +2 to 4 °C warming and there was a negative effect of ?0.6 pH units on embryos reaching the hatched gastrula stage. Mortality and abnormal development in larvae increased significantly even with +2 °C warming and larval growth was impaired at +4 °C. For the range of temperature and pH conditions tested, there were no interactive effects of stressors across all stages monitored. For M. calcar, warming not acidification was the dominant stressor. A regression model incorporating data from this study and projected increasing SST for the region suggests an increase in larval mortality to 70% for M. calcar by 2100 in the absence of acclimation and adaptation. The broad distribution of this species in eastern Australia encompassing subtropical to cold temperate thermal regimes provides the possibility that local M. calcar populations may be sustained in a warming world through poleward migration of thermotolerant propagules, facilitated by the strong southward flow of the East Australian Current. 相似文献