首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fungal biology》2023,127(4):997-1003
The Namib Desert of south-western Africa is one of the oldest deserts in the world and possesses unique geographical, biological and climatic features. While research through the last decade has generated a comprehensive survey of the prokaryotic communities in Namib Desert soils, little is yet known about the diversity and function of edaphic fungal communities, and even less of their responses to aridity. In this study, we have characterized soil fungal community diversity across the longitudinal xeric gradient across the Namib desert (for convenience, divided into the western fog zone, the central low-rainfall zone and the eastern high-rainfall zone), using internal transcribed sequence (ITS) metabarcoding. Ascomycota, Basidiomycota and Chytridiomycota consistently dominated the Namib Desert edaphic fungal communities and a core mycobiome composed of only 15 taxa, dominated by members of the class Dothideomycetes (Ascomycota), was identified. However, fungal community structures were significantly different in the fog, low-rainfall and high-rainfall zones. Furthermore, Namib Desert gravel plain fungal community assembly was driven by both deterministic and stochastic processes; the latter dominating in the all three xeric zones. We also present data that suggest that the inland limit of fog penetration represents an ecological barrier to fungal dispersal across the Namib Desert.  相似文献   

2.
Endemic to the Namib Desert, Fairy Circles (FCs) are vegetation-free circular patterns surrounded and delineated by grass species. Since first reported the 1970''s, many theories have been proposed to explain their appearance, but none provide a fully satisfactory explanation of their origin(s) and/or causative agent(s). In this study, we have evaluated an early hypothesis stating that edaphic microorganisms could be involved in their formation and/or maintenance. Surface soils (0–5cm) from three different zones (FC center, FC margin and external, grass-covered soils) of five independent FCs were collected in April 2013 in the Namib Desert gravel plains. T-RFLP fingerprinting of the bacterial (16S rRNA gene) and fungal (ITS region) communities, in parallel with two-way crossed ANOSIM, showed that FC communities were significantly different to those of external control vegetated soil and that each FC was also characterized by significantly different communities. Intra-FC communities (margin and centre) presented higher variability than the controls. Together, these results provide clear evidence that edaphic microorganisms are involved in the Namib Desert FC phenomenon. However, we are, as yet, unable to confirm whether bacteria and/or fungi communities are responsible for the appearance and development of FCs or are a general consequence of the presence of the grass-free circles.  相似文献   

3.
Gait selection is a strategy used by quadrupeds to meet the demands of locomotion under variable environmental conditions. The movement of black-backed jackals Canis mesomelas within a desert area was investigated. The usage and distribution of gaits in three distinct desert environments in the Namib Desert, Namibia, were analysed. The areas were chosen based on topographical differences: a bare, a featureless sand plain in an interdune valley, a large sand dune and a narrow dune valley with clumped plant growth. Fresh jackal tracks were recorded by GPS once a week for 1 year. Gait types, gait segment lengths and the rate of switches between gaits were analysed. Trot was the most frequently used gait in all areas, followed by walk and the two types of gallop. Jackals used faster gaits, with the lowest number of gait switches in the interdune plain. Movements on the sand dune were characterized by shorter gait segment lengths and frequent gait changes. In the dune valley, movements were slower and the rate of gait changes was intermediate between the other two areas. The strongest influence on gait choice and on gait changes was found to be the terrain topography, mainly the grade. Gait and track choice can be seen as a dynamic adaptation to a demanding environment like the Namib Desert.  相似文献   

4.
The Namib Desert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East–West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.  相似文献   

5.
The planting of sand‐binding vegetation in the Shapotou region at the southeastern edge of the Tengger Desert began in 1956. Over the past 46 years, it has not only insured the smooth operation of the Baotou–Lanzhou railway in the sand dune section but has also played an important role in the restoration of the local eco‐environment; therefore, it is viewed as a successful model for desertification control and ecological restoration along the transport line in the arid desert region of China. Long‐term monitoring and focused research show that within 4–5 years of establishment of sand‐binding vegetation, the physical surface structure of the sand dunes stabilized, and inorganic soil crusts formed by atmospheric dust gradually turned into microbiotic crusts. Among the organisms comprising these crusts are cryptogams such as desert algae and mosses. In the 46 years since establishing sand‐binding vegetation, some 24 algal species occurred in the crusts. However, only five moss species were identified, which was fewer than the species number in the crust of naturally fixed sand dunes. Other results of the planting were that near‐surface wind velocity in the 46‐year‐old vegetation area was reduced by 54.2% compared with that in the moving sand area; soil organic matter increased from 0.06% in moving sand dunes to 1.34% in the 46‐year‐old vegetation area; the main nutrients N, P, K, etc., in the desert ecosystem increased; soil physicochemical properties improved; and soil‐forming processes occurred in the dune surface layer. Overall, establishment of sand‐binding vegetation significantly impacted soil water cycles, creating favorable conditions for colonization by many herbaceous species. These herbaceous species, in turn, facilitated the colonization and persistence of birds, insects, soil animals, and desert animals. Forty‐six years later, some 28 bird species and 50 insect species were identified in the vegetated dune field. Thus, establishment of a relatively simple community of sand‐binding species led to the transformation of the relatively barren dune environment into a desert ecosystem with complex structure, composition, and function. This restoration effort shows the potential for short‐term manipulation of environmental variables (i.e., plant cover via artificial vegetation establishment) to begin the long‐term process of ecological restoration, particularly in arid climates, and demonstrates several techniques that can be used to scientifically monitor progress in large‐scale restoration projects.  相似文献   

6.
The Namib Desert golden mole (Eremitalpa granti namibensis) is morphologically, physiologically and behaviourally specialized for living in the harsh loose‐sand desert. Ecological studies have relied on visually tracking animals on the surface of sand dunes. A radio tag would allow individuals to be more reliably located, even while under the sand. We developed a radio attachment and gathered preliminary data on winter habitat use by six individuals during 21 days. We compare data from previous studies and suggest that the greater diurnal activity, smaller home ranges, and more restricted movement patterns that we found are related to the unusual thermal and metabolic biology of Eremitalpa.  相似文献   

7.
Aim Edaphic heterogeneity may be an important driver of population differentiation in the Amazon but remains to be investigated in trees. We compared the phylogeographic structure across the geographic distribution of two Protium (Burseraceae) species with different degrees of edaphic specialization: Protium alvarezianum, an edaphic specialist of white‐sand habitat islands; and Protium subserratum, an edaphic generalist found in white sand as well as in more widespread soil types. We predicted that in the edaphic specialist, geographic distance would structure populations more strongly than in the edaphic generalist, and that soil type would not structure populations in the edaphic generalist unless habitat acts as a barrier promoting population differentiation. Location Tropical rain forests of the Peruvian and Brazilian Amazon, Guyana and French Guiana. Methods We sequenced 1209–1211 bp of non‐coding nuclear ribosomal DNA (internal transcribed spacer and external transcribed spacer) and a neutral low‐copy nuclear gene (phytochrome C) from P. subserratum (n = 65, 10 populations) and P. alvarezianum (n = 19, three populations). We conducted a Bayesian phylogenetic analysis, constructed maximum parsimony haplotype networks and assessed population differentiation among groups (soil type or geographic locality) using analysis of molecular variance and spatial analysis of molecular variance. Results The edaphic specialist exhibited considerable genetic differentiation among geographically distant populations. The edaphic generalist showed significant genetic differentiation between the Guianan and Amazon Basin populations. Within Peru, soil type and not geographic distance explained most of the variation among populations. Non‐white‐sand populations in Peru exhibited lower haplotype/nucleotide diversity than white‐sand populations, were each other’s close relatives, and formed an unresolved clade derived from within the white‐sand populations. Main conclusions Geographic distance is a stronger driver of population differentiation in the edaphic specialist than in the generalist. However, this difference did not appear to be related to edaphic generalism per se as adjacent populations from both soil types in the edaphic generalist did not share many haplotypes. Populations of the edaphic generalist in white‐sand habitats exhibited high haplotype diversity and shared haplotypes with distant white‐sand habitat islands, indicating that they have either efficient long‐distance dispersal and/or larger ancestral effective population sizes and thus retain ancestral polymorphisms. These results highlight the importance of edaphic heterogeneity in promoting population differentiation in tropical trees.  相似文献   

8.
环境选择和扩散限制驱动温带森林土壤细菌群落的构建   总被引:1,自引:0,他引:1  
环境选择和扩散限制是生态系统中生物群落构建的两个基本过程,而两者相对作用的大小因研究尺度、群落属性和类型等有所不同.目前对温带亚高山森林土壤微生物群落构建的驱动因子和机制尚缺乏了解.本文利用PCR-DGGE技术研究庞泉沟自然保护区内5种典型森林包括华北落叶松林、青杄林、白杄林、油松林以及桦树林的6个森林土壤细菌群落(Lp MC1、Lp MC2、Pw MC、Pm MC、Pt MC、BMC)的结构特征及其影响因素,分析细菌群落结构与环境因子的相关性,以及土壤因子、植被和空间因素对细菌群落结构的影响.结果表明:研究区各样地土壤细菌群落的结构和生物多样性具有显著差异,低海拔落叶松和油松土壤细菌群落多样性较高(20条带),白杄林土壤细菌群落(13条带)多样性最低,高海拔落叶松土壤细菌群落多样性最高;土壤环境因子,如pH、土壤含水量、总碳、总氮、土壤有机质、速效磷以及土壤酶活性与土壤细菌群落多样性和结构显著相关;样地土壤细菌群落的beta多样性与群落的空间距离呈显著相关,表明扩散限制对群落结构具有一定的影响;方差分解分析结果显示,6个样地细菌群落结构的驱动因素大小依次为土壤因子(0.27)、空间因素(0.19)和植被(0.15);将区域土壤微生物作为"源群落",微宇宙试验结果显示,土壤因子是细菌群落结构形成的主要驱动力(0.35),同时源群落丰富的物种多样性对微宇宙土壤细菌群落结构具有显著影响.总之,在局域尺度下,环境选择对温带森林土壤细菌群落结构动态和多样性发挥主导作用,地理距离对群落结构具有显著影响,即确定性过程和随机过程共同决定局域森林土壤细菌群落结构,前者占主导地位.对于土壤细菌群落而言,扩散群落的组成和结构受到源群落的多样性特征和环境因子的双重影响.  相似文献   

9.
Soil nematodes are fundamentally aquatic animals, requiring water to move, feed, and reproduce. Nonetheless, they are ubiquitous in desert soils because they can enter an anhydrobiotic state that allows them to persist when water is biologically unavailable. In the hyper‐arid Namib Desert of Namibia, rain is rare, but fog routinely moves inland from the coast and supports plant and animal life. Very little is understood about how this fog may affect soil organisms. We investigated the role of fog moisture in the ecology of free‐living, soil nematodes across an 87‐km fog gradient in the gravel plains of the Namib Desert. We found that nematodes emerged from anhydrobiosis and became active during a fog event, suggesting that they can utilize fog moisture to survive. Nematode abundance did not differ significantly across the fog gradient and was similar under shrubs and in interplant spaces. Interplant soils harbor biological soil crusts that may sustain nematode communities. As fog declined along the gradient, nematode diversity increased in interplant soils. In areas where fog is rare, sporadic rainfall events can stimulate the germination and growth of desert ephemerals that may have a lasting effect on nematode diversity. In a 30‐day incubation experiment, nematode abundance increased when soils were amended with water and organic matter. However, these responses were not evident in field samples, which show no correlations among nematode abundance, location in the fog gradient, and soil organic matter content. Soil nematodes are found throughout the Namib Desert gravel plains under a variety of conditions. Although shown to be moisture‐ and organic matter‐limited and able to use moisture from the fog for activity, variation in fog frequency and soil organic matter across this unique ecosystem may be biologically irrelevant to soil nematodes in situ.  相似文献   

10.
Abstract. Three granite inselbergs and six dolerite dykes and their surroundings were investigated in the Central Namib, at the interface between the Namib Desert and Nama Karoo biomes. The main objectives of this study included a phytoso‐ciological interpretation of the described plant communities, explanation of the correlation of the communities with environmental variables and quantification of the relative contribution of different types of variables to structuring plant communities. Nine grassland and shrubland plant communities were recognized, largely organized according to general habitat, elevation, size of inselberg and geology. Soil properties, often thought to play an important role in arid environments, showed no clear patterns in the level of analyses used in this study. Other environmental parameters of importance in arid mountain habitats, such as slope aspect and angle, also played a minor role. The main implications of the study are: 1. Central Namib inselbergs, particularly granite domes, harbour diverse plant communities, often with species from neighbouring higher rainfall areas, and are thus of high conservation value. 2. The poor contribution of environmental variables in this study, which are conventionally used in field studies of plant community – environment relationships, may demand a critical review of additional parameters to be included when analysing plant community – environment relations in arid environments. In particular between‐season variation, phytogeographic aspects and the heterogeneity of microhabitats, often contained within a plant community, need to be taken into account.  相似文献   

11.
Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem''s food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem.  相似文献   

12.
13.
Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment.  相似文献   

14.

Aim

Desert ecosystems, with their harsh environmental conditions, hold the key to understanding the responses of biodiversity to climate change. As desert community structure is influenced by processes acting at different spatial scales, studies combining multiple scales are essential for understanding the conservation requirements of desert biota. We investigated the role of environmental variables and biotic interactions in shaping broad and fine‐scale patterns of diversity and distribution of bats in arid environments to understand how the expansion of nondesert species can affect the long‐term conservation of desert biodiversity.

Location

Levant, Eastern Mediterranean.

Methods

We combine species distribution modelling and niche overlap statistics with a statistical model selection approach to integrate interspecific interactions into broadscale distribution models and fine‐scale analysis of ecological requirements. We focus on competition between desert bats and mesic species that recently expanded their distribution into arid environment following anthropogenic land‐use changes.

Results

We show that both climate and water availability limit bat distributions and diversity across spatial scales. The broadscale distribution of bats was determined by proximity to water and high temperatures, although the latter did not affect the distribution of mesic species. At the fine‐scale, high levels of bat activity and diversity were associated with increased water availability and warmer periods. Desert species were strongly associated with warmer and drier desert types. Range and niche overlap were high among potential competitors, but coexistence was facilitated through fine‐scale spatial partitioning of water resources.

Main conclusions

Adaptations to drier and warmer conditions allow desert‐obligate species to prevail in more arid environments. However, this competitive advantage may disappear as anthropogenic activities encroach further into desert habitats. We conclude that reduced water availability in arid environments under future climate change projections pose a major threat to desert wildlife because it can affect survival and reproductive success and may increase competition over remaining water resources.  相似文献   

15.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   

16.
This study examined the effects of topographic and edaphic conditions on alpine plant species distribution along a slope gradient on Mt. Norikura (3026 m a.s.l.), central Japan. Topographic and edaphic factors investigated at 40 plots were: slope inclination, ground surface texture, soil water content and soil inorganic nitrogen concentration (NO3-N, NH4-N). The topographic and edaphic factors changed with slope positions: slope inclination was steeper, soil texture was coarser, and soil water and inorganic nitrogen concentration decreased with increasing slope position. Five vegetation types were located along the slope gradient and related to two factor-groups: (1) changes in soil water, NH4-N, slope inclination along the slope gradient, and (2) ground surface texture. A tall herbaceous plant community developed at the low slope position, near tarns, with fine soil surface texture, high soil water and NH4-N, while Dicentra peregrina dominated on an unstable rubble slope near the ridge top. The distribution of each species was predictable from the two factor-groups. Although the five vegetation types were related to the two factor-groups, responses to the two factor-groups differed among species, even within the same vegetation type. Therefore, this study showed that the topography of the terrain largely regulated alpine plant distribution by affecting edaphic conditions, and that global warming may alter species composition by changing edaphic conditions.  相似文献   

17.
Increases in the magnitude and variability of precipitation events have been predicted for the Chihuahuan Desert region of West Texas. As patterns of moisture inputs and amounts change, soil microbial communities will respond to these alterations in soil moisture windows. In this study, we examined the soil microbial community structure within three vegetation zones along the Pine Canyon Watershed, an elevation and vegetation gradient in Big Bend National Park, Chihuahuan Desert. Soil samples at each site were obtained in mid-winter (January) and in mid-summer (August) for 2 years to capture a component of the variability in soil temperature and moisture that can occur seasonally and between years along this watershed. Precipitation patterns and amounts differed substantially between years with a drought characterizing most of the second year. Soils were collected during the drought period and following a large rainfall event and compared to soil samples collected during a relatively average season. Structural changes within microbial community in response to site, season, and precipitation patterns were evaluated using fatty acid methyl ester (FAME) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses. Fungal FAME amounts differed significantly across seasons and sites and greatly outweighed the quantity of bacterial and actinomycete FAME levels for all sites and seasons. The highest fungal FAME levels were obtained in the low desert scrub site and not from the high elevation oak–pine forests. Total bacterial and actinomycete FAME levels did not differ significantly across season and year within any of the three locations along the watershed. Total bacterial and actinomycete FAME levels in the low elevation desert-shrub and grassland sites were slightly higher in the winter than in the summer. Microbial community structure at the high elevation oak–pine forest site was strongly correlated with levels of NH4 +–N, % soil moisture, and amounts of soil organic matter irrespective of season. Microbial community structure at the low elevation desert scrub and sotol grasslands sites was most strongly related to soil pH with bacterial and actinobacterial FAME levels accounting for site differences along the gradient. DGGE band counts of amplified soil bacterial DNA were found to differ significantly across sites and season with the highest band counts found in the mid-elevation grassland site. The least number of bands was observed in the high elevation oak–pine forest following the large summer-rain event that occurred after a prolonged drought. Microbial responses to changes in precipitation frequency and amount due to climate change will differ among vegetation zones along this Chihuahuan Desert watershed gradient. Soil bacterial communities at the mid-elevation grasslands site are the most vulnerable to changes in precipitation frequency and timing, while fungal community structure is most vulnerable in the low desert scrub site. The differential susceptibility of the microbial communities to changes in precipitation amounts along the elevation gradient reflects the interactive effects of the soil moisture window duration following a precipitation event and differences in soil heat loads. Amounts and types of carbon inputs may not be as important in regulating microbial structure among vegetation zones within in an arid environment as is the seasonal pattern of soil moisture and the soil heat load profile that characterizes the location.  相似文献   

18.
In hyper-arid soil environments, photosynthetic microorganisms are largely restricted to hypolithic (sub-lithic) habitats: i.e., on the ventral surfaces of translucent pebbles in desert pavements. Here, we combined fluorometric, spectroscopic, biochemical and metagenomic approaches to investigate in situ the light transmission properties of quartz stones in the Namib Desert, and assess the photosynthetic activity of the underlying hypolithic cyanobacterial biofilms. Quartz pebbles greatly reduced the total photon flux to the ventral surface biofilms and filtered out primarily the short wavelength portion of the solar spectrum. Chlorophylls d and f were not detected in biofilm pigment extracts; however, hypolithic cyanobacterial communities showed some evidence of adaptation to sub-lithic conditions, including the prevalence of genes encoding Helical Carotenoid Proteins, which are associated with desiccation stress. Under water-saturated conditions, hypolithic communities showed no evidence of light stress, even when the quartz stones were exposed to full midday sunlight. This initial study creates a foundation for future in-situ and laboratory exploration of various adaptation mechanisms employed by photosynthetic organisms forming hypolithic microbial communities.  相似文献   

19.
Question: How do environmental variables in a hyper‐arid fog desert influence the distribution patterns of terricolous lichens on both macro‐ and micro‐scales? Location: Namib Desert, Namibia. Methods: Sites with varying lichen species cover were sampled for environmental variables on a macro‐scale (elevation, slope degree, aspect, proximity to river channels, and fog deposition) and on a micro‐scale (soil structure and chemistry). Macro‐scale and micro‐scale variables were analysed separately for associations with lichen species cover using constrained ordination (DCCA) and unconstrained ordination (DCA). Explanatory variables that dominated the first two axes of the constrained ordinations were tested against a lichen cover gradient. Results: Elevation and proximity to river channels were the most significant drivers of lichen species cover in the macro‐scale DCCA, but results of the DCA suggest that a considerable percentage of variation in lichen species cover is unexplained by these variables. On a micro‐scale, sediment particle size explained a majority of lichen community variations, followed by soil pH. When both macro and micro‐scale variables were tested along a lichen cover gradient, soil pH was the only variable to show a significant relationship to lichen cover. Conclusion: The findings suggest that landscape variables contribute to variations in lichen species cover, but that stronger links occur between lichen growth and small‐scale variations in soil characteristics, supporting the need for multi‐scale approaches in the management of threatened biological soil crust communities and related ecosystem functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号