首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
    
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

3.
Background and Aims Many individual studies have shown that the timing of leaf senescence in boreal and temperate deciduous forests in the northern hemisphere is influenced by rising temperatures, but there is limited consensus on the magnitude, direction and spatial extent of this relationship.Methods A meta-analysis was conducted of published studies from the peer-reviewed literature that reported autumn senescence dates for deciduous trees in the northern hemisphere, encompassing 64 publications with observations ranging from 1931 to 2010.Key Results Among the meteorological measurements examined, October temperatures were the strongest predictors of date of senescence, followed by cooling degree-days, latitude, photoperiod and, lastly, total monthly precipitation, although the strength of the relationships differed between high- and low-latitude sites. Autumn leaf senescence has been significantly more delayed at low (25° to 49°N) than high (50° to 70°N) latitudes across the northern hemisphere, with senescence across high-latitude sites more sensitive to the effects of photoperiod and low-latitude sites more sensitive to the effects of temperature. Delays in leaf senescence over time were stronger in North America compared with Europe and Asia.Conclusions The results indicate that leaf senescence has been delayed over time and in response to temperature, although low-latitude sites show significantly stronger delays in senescence over time than high-latitude sites. While temperature alone may be a reasonable predictor of the date of leaf senescence when examining a broad suite of sites, it is important to consider that temperature-induced changes in senescence at high-latitude sites are likely to be constrained by the influence of photoperiod. Ecosystem-level differences in the mechanisms that control the timing of leaf senescence may affect both plant community interactions and ecosystem carbon storage as global temperatures increase over the next century.  相似文献   

4.
Observations of net ecosystem exchange (NEE) of carbon and its biophysical drivers have been collected at the AmeriFlux site in the Morgan‐Monroe State Forest (MMSF) in Indiana, USA since 1998. Thus, this is one of the few deciduous forest sites in the world, where a decadal analysis on net ecosystem productivity (NEP) trends is possible. Despite the large interannual variability in NEP, the observations show a significant increase in forest productivity over the past 10 years (by an annual increment of about 10 g C m?2 yr?1). There is evidence that this trend can be explained by longer vegetative seasons, caused by extension of the vegetative activity in the fall. Both phenological and flux observations indicate that the vegetative season extended later in the fall with an increase in length of about 3 days yr?1 for the past 10 years. However, these changes are responsible for only 50% of the total annual gain in forest productivity in the past decade. A negative trend in air and soil temperature during the winter months may explain an equivalent increase in NEP through a decrease in ecosystem respiration.  相似文献   

5.
气候变暖导致温带植物春季物候显著提前,影响陆地生态系统结构和功能。开花时间是决定植物繁殖和更新的重要因素,以往的研究主要关注气候变化对春季展叶或者开花等单一物候事件的影响,\"开花-展叶\"时间间隔对气候变化的响应受到的关注较少,深刻理解植物展叶和开花时间及其间隔对气候变化的响应差异对于理解生态系统对气候变化响应和生物多样性维持机制具有重要意义。以两个先开花后展叶植物迎春(Jasminum nudiflorum)和榆叶梅(Amygdalus triloba)为研究对象,通过野外剪枝和气候变化模拟实验探究了春季温度、光周期和冬季冷激对植物春季开花、展叶速度及其时间间隔的影响。研究结果表明,在升温2℃、5℃、10℃条件下,春季升温显著加快了两种植物春季展叶和开花的速度,迎春和榆叶梅的展叶速度分别平均缩短了(8.2±1.2)d和(3.9±1.4)d,开花速度分别平均缩短了(1.1±0.8)d和(5.0±1.4)d。冬季冷激增加加快了两种植物展叶速度,但对开花速度没有显著影响。此外,春季升温缩短了迎春的\"开花-展叶\"时间间隔,平均缩短了(17.0±1.2)d,对榆叶梅无显著影响。冬季冷激增加显著缩短了两个植物\"开花-展叶\"时间间隔,高冷激处理下迎春和榆叶梅的\"开花-展叶\"时间间隔分别比低冷激处理缩短了(7.8±0.9)d和(4.1±1.4)d。光周期对两种植物开花和展叶速度及其间隔的影响均不显著。研究揭示了植物春季展叶、开花速度及其间隔对气候变化的响应规律,对于揭示植物营养组织和生殖组织的资源分配过程,维持生态系统稳定性具有重要意义。  相似文献   

6.
  总被引:1,自引:0,他引:1  
Frost events during the active growth period of plants can cause extensive frost damage with tremendous economic losses and dramatic ecological consequences. A common assumption is that climate warming may bring along a reduction in the frequency and severity of frost damage to vegetation. On the other hand, it has been argued that rising temperature in late winter and early spring might trigger the so called “false spring”, that is, early onset of growth that is followed by cold spells, resulting in increased frost damage. By combining daily gridded climate data and 1,489 k in situ phenological observations of 27 tree species from 5,565 phenological observation sites in Europe, we show here that temporal changes in the risk of spring frost damage with recent warming vary largely depending on the species and geographical locations. Species whose phenology was especially sensitive to climate warming tended to have increased risk of frost damage. Geographically, compared with continental areas, maritime and coastal areas in Europe were more exposed to increasing occurrence of frost and these late spring frosts were getting more severe in the maritime and coastal areas. Our results suggest that even though temperatures will be elevated in the future, some phenologically responsive species and many populations of a given species will paradoxically experience more frost damage in the future warming climate. More attention should be paid to the increased frost damage in responsive species and populations in maritime areas when developing strategies to mitigate the potential negative impacts of climate change on ecosystems in the near future.  相似文献   

7.
    
Recent studies have revealed large unexplained variation in heat requirement‐based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species‐specific heat requirement for leaf flushing of 13 temperate woody species using long‐term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980–2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well‐known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available. Further experimental research is thus needed to verify whether insolation and precipitation sums directly affect the heat requirement for leaf flushing.  相似文献   

8.
Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (‘forcing’) typically triggers growth initiation, but many trees also require exposure to cool temperatures (‘chilling’) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height‐ and diameter‐growth initiation in coast Douglas‐fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field‐based and controlled‐environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, toward lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter‐growth initiation than height‐growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas‐fir to climate change at the warm edges of its distribution.  相似文献   

9.
    
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf‐out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6–8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf‐out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf‐out, to extending the growing season under future warmer conditions.  相似文献   

10.
    
Climate change has changed numerous species phenologies. Understanding the asynchronous responses between pest insects and host plants to climate change is helpful in improving integrated pest management. It is necessary to use long‐term data to analyze the effects of climate change on cotton bollworm and wheat anthesis. Data for cotton bollworm, wheat yield, and wheat anthesis collected since 1990 were analyzed using linear regression and partial least‐squares regression, as well as the Mann–Kendall test. The results showed that warmer temperatures in the spring advanced the phenologies of cotton bollworm and wheat anthesis, but the phenology changes in overwintering cotton bollworm were faster than those in wheat anthesis, and the eclosion period of overwintering was prolonged, resulting in an increase in overwintering adult abundance. This might lead to more first‐generation larvae and subsequent wheat damage. An early or late first‐appearance date significantly affected the eclosion days. The abrupt changes of phenologies in cotton bollworm, wheat anthesis, and climate were asynchronous, but the abrupt phenology changes occurred after or around the climate abrupt change, especially after or around the abrupt changes of temperature in March and April. The expansion of asynchronous responses in the change rate of wheat anthesis and overwintering cotton bollworm would likely decrease wheat yield due to climate warming in the future. Accumulated temperature was the major affecting factor on the first eclosion date (t1), adult abundance, and eclosion days. Temperatures in March and April and precipitation in the winter mainly affected the prepeak date (t2), peak date (t3), and postpeak date (t4), respectively, and these factors indirectly affected wheat yield. Thus, the change in the spring phenology of the cotton bollworm and wheat anthesis, and hence wheat yield, was affected by climate warming.  相似文献   

11.
    
The unprecedented warming that has occurred in recent decades has led to later autumn leaf senescence dates (LSD) throughout the Northern Hemisphere. Yet, great uncertainties still exist regarding the strength of these delaying trends, especially in terms of how soil moisture affects them. Here we show that changes in soil moisture in 1982–2015 had a substantial impact on autumn LSD in one-fifth of the vegetated areas in the Northern Hemisphere (>30° N), and how it contributed more to LSD variability than either temperature, precipitation or radiation. We developed a new model based on soil-moisture-constrained cooling degree days (CDDSM) to characterize the effects of soil moisture on LSD and compared its performance with the CDD, Delpierre and spring-influenced autumn models. We show that the CDDSM model with inputs of temperature and soil moisture outperformed the three other models for LSD modelling and had an overall higher correlation coefficient (R), a lower root mean square error and lower Akaike information criterion (AIC) between observations and model predictions. These improvements were particularly evident in arid and semi-arid regions. We studied future LSD using the CDDSM model under two scenarios (SSP126 and SSP585) and found that predicted LSD was 4.1 ± 1.4 days and 5.8 ± 2.8 days earlier under SSP126 and SSP585, respectively, than other models for the end of this century. Our study therefore reveals the importance of soil moisture in regulating autumn LSD and, in particular, highlights how coupling this effect with LSD models can improve simulations of the response of vegetation phenology to future climate change.  相似文献   

12.
气候变化对植物物候产生了重要影响,春季萌芽时间的变化不仅会通过改变植物的光合作用影响碳汇能力,还会通过改变群落内的种间关系影响生态系统结构和功能。因此,掌握群落内不同树种春季萌芽对气候变化的响应对于深刻理解物候时间位分化、认识陆地生态系统碳水循环和能量平衡具有重要意义。为提高春季物候模型的预测精度,阐明气候变化对不同树种春季萌芽的影响,以鹅耳枥(Carpinus turczaninowii)、黑桦(Betula dahurica)、华北落叶松(Larix principis-rupprechtii)、糠椴(Tilia mandshurica)和元宝枫(Acer truncatum)5个温带森林的典型树种为研究对象,通过剪枝实验分析了冬季冷激、春季温度和光周期对枝条春季萌芽时间的影响。结果表明,温度升高和冷激增加显著提前了所有树种的春季萌芽时间,从5℃到20℃,春季萌芽时间平均提前了54.5 d;在较高的冷激条件下,春季萌芽时间平均缩短了17.8 d;光周期对各树种春季萌芽时间均没有显著影响,8 h和16 h光周期条件下各树种平均萌芽时间分别为30.3和30.5 d。此外,随着温度升高,...  相似文献   

13.
    
Changes in the spring onset of vegetation growth in response to climate change can profoundly impact climate–biosphere interactions. Thus, robust simulation of spring onset is essential to accurately predict ecosystem responses and feedback to ongoing climate change. To date, the ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at larger scales has not been thoroughly investigated. In this study, we took advantage of phenology observations via remote sensing to calibrate and evaluated six models, including both one‐phase (considering only forcing temperatures) and two‐phase (involving forcing, chilling, and photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found that the model that integrated the photoperiod effect performed best at capturing spatiotemporal patterns of spring phenology in boreal and temperate forests. By contrast, all of the models performed poorly in simulating the onset of growth in grasslands. These results suggest that the photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, whereas other environmental factors (e.g., precipitation) should be considered when simulating the onset of growth in grasslands. We also found that the one‐phase model performed as well as the two‐phase models in boreal forests, which implies that the chilling requirement is probably fulfilled across most of the boreal zone. Conversely, two‐phase models performed better in temperate forests than the one‐phase model, suggesting that photoperiod and chilling play important roles in these temperate forests. Our results highlight the significance of including chilling and photoperiod effects in models of the spring onset of forest growth at large scales, and indicate that the consideration of additional drivers may be required for grasslands.  相似文献   

14.
Shifts in the timing of spring phenology are a central feature of global change research. Long‐term observations of plant phenology have been used to track vegetation responses to climate variability but are often limited to particular species and locations and may not represent synoptic patterns. Satellite remote sensing is instead used for continental to global monitoring. Although numerous methods exist to extract phenological timing, in particular start‐of‐spring (SOS), from time series of reflectance data, a comprehensive intercomparison and interpretation of SOS methods has not been conducted. Here, we assess 10 SOS methods for North America between 1982 and 2006. The techniques include consistent inputs from the 8 km Global Inventory Modeling and Mapping Studies Advanced Very High Resolution Radiometer NDVIg dataset, independent data for snow cover, soil thaw, lake ice dynamics, spring streamflow timing, over 16 000 individual measurements of ground‐based phenology, and two temperature‐driven models of spring phenology. Compared with an ensemble of the 10 SOS methods, we found that individual methods differed in average day‐of‐year estimates by ±60 days and in standard deviation by ±20 days. The ability of the satellite methods to retrieve SOS estimates was highest in northern latitudes and lowest in arid, tropical, and Mediterranean ecoregions. The ordinal rank of SOS methods varied geographically, as did the relationships between SOS estimates and the cryospheric/hydrologic metrics. Compared with ground observations, SOS estimates were more related to the first leaf and first flowers expanding phenological stages. We found no evidence for time trends in spring arrival from ground‐ or model‐based data; using an ensemble estimate from two methods that were more closely related to ground observations than other methods, SOS trends could be detected for only 12% of North America and were divided between trends towards both earlier and later spring.  相似文献   

15.
    
Recent phenological studies in tropical deciduous forests revealed a mosaic of vegetation composed of several pheno-phases that are evolved as an adaptation by the species to overcome seasonal drought in different ways. These pheno-phases represent extent of annual deciduousness (~leaflessness) and triggering factors for buds break (e.g. vegetative and flower). Thus, studying patterns of various pheno-phases (phonological diversity) in tropical forest have been thought to provide a potential tool to address critical questions related to climate change modeling and monitoring. In tropics, tree species represent a gradient of deciduousness (from leaf-exchanging species to >6 months deciduous species) and flowering initiation (breaking of flower buds in various part of annual cycle). Both processes are mostly triggered by variation in day length and/or temperature during late dry season/autumn, and/or first significant rain during rainy season. In addition, few factors like drought induced leaf fall and sporadic winter rains are supposed to affect these processes temporarily. Besides, the abundances of pheno-phases (i.e. leafing and flowering) also vary among tropical deciduous forest trees. Presence of such variations in tropical tree pheno-phases and their abundances are reported to vary due to micro-climatic variables and has specific implications in tropical forests. Present paper discusses the existing information on various pheno-phases and their abundances in tropical forests and role of climatic factors on tree phonological diversity. Further, we emphasized the need to develop predicting understanding of impending climatic change (i.e. precipitation and temperature) on diversity of pheno-phases by collecting long-term data on tree pheno-phases through a network of phonological stations in dry tropics.  相似文献   

16.
    
The change in spring phenology is recognized to exert a major influence on carbon balance dynamics in temperate ecosystems. Over the past several decades, several studies focused on shifts in spring phenology; however, large uncertainties still exist, and one understudied source could be the method implemented in retrieving satellite‐derived spring phenology. To account for this potential uncertainty, we conducted a multimethod investigation to quantify changes in vegetation green‐up date from 1982 to 2010 over temperate China, and to characterize climatic controls on spring phenology. Over temperate China, the five methods estimated that the vegetation green‐up onset date advanced, on average, at a rate of 1.3 ± 0.6 days per decade (ranging from 0.4 to 1.9 days per decade) over the last 29 years. Moreover, the sign of the trends in vegetation green‐up date derived from the five methods were broadly consistent spatially and for different vegetation types, but with large differences in the magnitude of the trend. The large intermethod variance was notably observed in arid and semiarid vegetation types. Our results also showed that change in vegetation green‐up date is more closely correlated with temperature than with precipitation. However, the temperature sensitivity of spring vegetation green‐up date became higher as precipitation increased, implying that precipitation is an important regulator of the response of vegetation spring phenology to change in temperature. This intricate linkage between spring phenology and precipitation must be taken into account in current phenological models which are mostly driven by temperature.  相似文献   

17.
18.
         下载免费PDF全文
Recent phenological studies in tropical deciduous forests revealed a mosaic of vegetation composed of several pheno-phases that are evolved as an adaptation by the species to overcome seasonal drought in different ways. These pheno-phases represent extent of annual deciduousness (~leaflessness) and triggering factors for buds break (e.g. vegetative and flower). Thus, studying patterns of various pheno-phases (phonological diversity) in tropical forest have been thought to provide a potential tool to address critical questions related to climate change modeling and monitoring. In tropics, tree species represent a gradient of deciduousness (from leaf-exchanging species to >6 months deciduous species) and flowering initiation (breaking of flower buds in various part of annual cycle). Both processes are mostly triggered by variation in day length and/or temperature during late dry season/autumn, and/or first significant rain during rainy season. In addition, few factors like drought induced leaf fall and sporadic winter rains are supposed to affect these processes temporarily. Besides, the abundances of pheno-phases (i.e. leafing and flowering) also vary among tropical deciduous forest trees. Presence of such variations in tropical tree pheno-phases and their abundances are reported to vary due to micro-climatic variables and has specific implications in tropical forests. Present paper discusses the existing information on various pheno-phases and their abundances in tropical forests and role of climatic factors on tree phonological diversity. Further, we emphasized the need to develop predicting understanding of impending climatic change (i.e. precipitation and temperature) on diversity of pheno-phases by collecting long-term data on tree pheno-phases through a network of phonological stations in dry tropics.  相似文献   

19.
    
Climate warming is currently advancing spring leaf‐out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanisms have been proposed to regulate the timing of leaf emergence in response to changing environmental cues, but the relative importance of those mechanisms remains unclear. Here, we use 727,401 direct phenological observations of common European forest trees to examine the dominant controls on leaf‐out. Using the emerging mechanisms, we forecast future trajectories of spring arrival and evaluate the consequences for forest carbon dynamics. By representing hypothesized relationships with autumn temperature, winter chilling, and the timing of spring onset, we accurately predicted reductions in the advance of leaf‐out. There was a strong consensus between our empirical model and existing process‐based models, revealing that the advance in leaf‐out will not exceed 2 weeks over the rest of the century. We further estimate that, under a ‘business‐as‐usual’ climate scenario, earlier spring arrival will enhance NPP of temperate and boreal forests by ~0.2 Gt per year at the end of the century. In contrast, previous estimates based on a simple degree‐day model range around 0.8 Gt. As such, the expected NPP is drastically reduced in our updated model relative to previous estimates—by a total of ~25 Gt over the rest of the century. These findings reveal important environmental constraints on the productivity of broad‐leaved deciduous trees and highlight that shifting spring phenology is unlikely to slow the rate of warming by offsetting anthropogenic carbon emissions.  相似文献   

20.
    
Many organisms rely on synchronizing the timing of their life‐history events with those of other trophic levels—known as phenological matching—for survival or successful reproduction. In temperate deciduous forests, the extent of matching with the budburst date of key tree species is of particular relevance for many herbivorous insects and, in turn, insectivorous birds. In order to understand the ecological and evolutionary forces operating in these systems, we require knowledge of the factors influencing leaf emergence of tree communities. However, little is known about how phenology at the level of individual trees varies across landscapes, or how consistent this spatial variation is between different tree species. Here, we use field observations, collected over 2 years, to characterize within‐ and between‐species differences in spring phenology for 825 trees of six species (Quercus robur, Fraxinus excelsior, Fagus sylvatica, Betula pendula, Corylus avellana, and Acer pseudoplatanus) in a 385‐ha woodland. We explore environmental predictors of individual variation in budburst date and bud development rate and establish how these phenological traits vary over space. Trees of all species showed markedly consistent individual differences in their budburst timing. Bud development rate also varied considerably between individuals and was repeatable in oak, beech, and sycamore. We identified multiple predictors of budburst date including altitude, local temperature, and soil type, but none were universal across species. Furthermore, we found no evidence for interspecific covariance of phenology over space within the woodland. These analyses suggest that phenological landscapes are highly complex, varying over small spatial scales both within and between species. Such spatial variation in vegetation phenology is likely to influence patterns of selection on phenology within populations of consumers. Knowledge of the factors shaping the phenological environments experienced by animals is therefore likely to be key in understanding how these evolutionary processes operate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号