共查询到6条相似文献,搜索用时 0 毫秒
1.
Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time‐series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern‐ and north‐easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries‐independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. 相似文献
2.
Cme Denechaud Szymon Smoliski Audrey J. Geffen Jane A. Godiksen Steven E. Campana 《Global Change Biology》2020,26(10):5661-5678
Marine ecosystems, particularly in high‐latitude regions such as the Arctic, have been significantly affected by human activities and contributions to climate change. Evaluating how fish populations responded to past changes in their environment is helpful for evaluating their future patterns, but is often hindered by the lack of long‐term biological data available. Using otolith increments of Northeast Arctic cod (Gadus morhua) as a proxy for individual growth, we developed a century‐scale biochronology (1924–2014) based on the measurements of 3,894 fish, which revealed significant variations in cod growth over the last 91 years. We combined mixed‐effect modeling and path analysis to relate these growth variations to selected climate, population and fishing‐related factors. Cod growth was negatively related to cod population size and positively related to capelin population size, one of the most important prey items. This suggests that density‐dependent effects are the main source of growth variability due to competition for resources and cannibalism. Growth was also positively correlated with warming sea temperatures but negatively correlated with the Atlantic Multidecadal Oscillation, suggesting contrasting effects of climate warming at different spatial scales. Fishing pressure had a significant but weak negative direct impact on growth. Additionally, path analysis revealed that the selected growth factors were interrelated. Capelin biomass was positively related to sea temperature and negatively influenced by herring biomass, while cod biomass was mainly driven by fishing mortality. Together, these results give a better understanding of how multiple interacting factors have shaped cod growth throughout a century, both directly and indirectly. 相似文献
3.
4.
Evgeny Genelt‐Yanovskiy Sophia Nazarova Oleg Tarasov Natalia Mikhailova Petr Strelkov 《Journal of Zoological Systematics and Evolutionary Research》2019,57(1):67-79
Using mitochondrial COI sequencing, we explored the genetic diversity and population structuring of the common cockle Cerastoderma edule (Linnaeus, 1758) in the Norwegian and Barents Seas. Phylogeographic diversity and hence the evolutionary history of C. edule on the Scandinavian and Russian coastlines were found to be richer than expected for populations of temperate species in postglacially colonized seas. A major phylogeographic break at Lofoten Islands separated a group of subarctic populations dominated by a distinct star‐shaped clade of haplotypes from those to the south, extending to the North Sea and having highest gene diversities (h). At the northeastern edge of the range of C. edule, the Russian Murman coast, populations show a mosaic structure with considerable admixture of haplotypes from the south and high local‐scale variation in haplotype diversity (ranging between 0 and 0.8). To explain this mosaic we refer to the core‐satellite metapopulation model, with Norwegian populations as core, and Murman populations as satellites. Our results contradict the conventional biogeographic paradigm implying lack of metapopulation structuring in marine broadcast spawning invertebrates. Hypotheses considered to explain the origin of the unique variation in cockles from Northern Norway involve an early postglacial colonization and establishment of these populations (10–12 ka ago), a persistent oceanographic break at Lofoten, and a mitochondrial selective sweep associated with the postglacial recolonization of the subarctic seas by the boreal C. edule. 相似文献
5.
6.
Mindy L. Richlen Deana L. Erdner Linda A. R. McCauley Katie Libera Donald M. Anderson 《Ecology and evolution》2012,2(10):2588-2599
In Massachusetts, paralytic shellfish poisoning (PSP) is annually recurrent along the coastline, including within several small embayments on Cape Cod. One such system, the Nauset Marsh System (NMS), supports extensive marshes and a thriving shellfishing industry. Over the last decade, PSP in the NMS has grown significantly worse; however, the origins and dynamics of the toxic Alexandrium fundyense (Balech) populations that bloom within the NMS are not well known. This study examined a collection of 412 strains isolated from the NMS and the Gulf of Maine (GOM) in 2006–2007 to investigate the genetic characteristics of localized blooms and assess connectivity with coastal populations. Comparisons of genetic differentiation showed that A. fundyense blooms in the NMS exhibited extensive clonal diversity and were genetically distinct from populations in the GOM. In both project years, genetic differentiation was observed among temporal samples collected from the NMS, sometimes occurring on the order of approximately 7 days. The underlying reasons for temporal differentiation are unknown, but may be due, in part, to life‐cycle characteristics unique to the populations in shallow embayments, or possibly driven by selection from parasitism and zooplankton grazing; these results highlight the need to investigate the role of selective forces in the genetic dynamics of bloom populations. The small geographic scale and limited connectivity of NMS salt ponds provide a novel system for investigating regulators of blooms, as well as the influence of selective forces on population structure, all of which are otherwise difficult or impossible to study in the adjacent open‐coastal waters or within larger estuaries. 相似文献