首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20–50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active‐layer detachment slides, thermo‐erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off‐site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2O concentration. Elevated N2O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the incorporation of this nonlinear process into projections of carbon and nitrogen release from degrading permafrost.  相似文献   

2.
Temporal trends of N2O fluxes across the soil–atmosphere interface were determined using continuous flux chamber measurements over an entire growing season of a subsurface aerating macrophyte (Phalaris arundinacea) in a nonmanaged Danish wetland. Observed N2O fluxes were linked to changes in subsurface N2O and O2 concentrations, water level (WL), light intensity as well as mineral‐N availability. Weekly concentration profiles showed that seasonal variations in N2O concentrations were directly linked to the position of the WL and O2 availability at the capillary fringe above the WL. N2O flux measurements showed surprisingly high temporal variability with marked changes in fluxes and shifts in flux directions from net source to net sink within hours associated with changing light conditions. Systematic diurnal shifts between net N2O emission during day time and deposition during night time were observed when max subsurface N2O concentrations were located below the root zone. Correlation (P < 0.001) between diurnal variations in O2 concentrations and incoming photosynthetically active radiation highlighted the importance of plant‐driven subsoil aeration of the root zone and the associated controls on coupled nitrification/denitrification. Therefore, P. arundinacea played an important role in facilitating N2O transport from the root zone to the atmosphere, and exclusion of the aboveground biomass in flux chamber measurements may lead to significant underestimations on net ecosystem N2O emissions. Complex interactions between seasonal changes in O2 and mineral‐N availability following near‐surface WL fluctuations in combination with plant‐mediated gas transport by P. arundinacea controlled the subsurface N2O concentrations and gas transport mechanisms responsible for N2O fluxes across the soil–atmosphere interface. Results demonstrate the necessity for addressing this high temporal variability and potential plant transport of N2O in future studies of net N2O exchange across the soil–atmosphere interface.  相似文献   

3.
4.
Biomass from short‐rotation coppice (SRC) of woody perennials is being increasingly used as a bioenergy source to replace fossil fuels, but accurate assessments of the long‐term greenhouse gas (GHG) balance of SRC are lacking. To evaluate its mitigation potential, we monitored the GHG balance of a poplar (Populus) SRC in Flanders, Belgium, over 7 years comprising three rotations (i.e., two 2 year rotations and one 3 year rotation). In the beginning—that is, during the establishment year and during each year immediately following coppicing—the SRC plantation was a net source of GHGs. Later on—that is, during each second or third year after coppicing—the site shifted to a net sink. From the sixth year onward, there was a net cumulative GHG uptake reaching ?35.8 Mg CO2 eq/ha during the seventh year. Over the three rotations, the total CO2 uptake was ?51.2 Mg CO2/ha, while the emissions of CH4 and N2O amounted to 8.9 and 6.5 Mg CO2 eq/ha, respectively. As the site was non‐fertilized, non‐irrigated, and only occasionally flooded, CO2 fluxes dominated the GHG budget. Soil disturbance after land conversion and after coppicing were the main drivers for CO2 losses. One single N2O pulse shortly after SRC establishment contributed significantly to the N2O release. The results prove the potential of SRC biomass plantations to reduce GHG emissions and demonstrate that, for the poplar plantation under study, the high CO2 uptake outweighs the emissions of non‐CO2 greenhouse gases.  相似文献   

5.
华南丘陵区2种土地利用方式下地表CH4和N2O通量研究   总被引:5,自引:1,他引:4  
采用静态箱-气相色谱法对华南丘陵区马尾松林和果园地表CH4和N2O通量及其主要影响因子进行了观测(马尾松Pinus massoniana林为期16个月,果园15个月),比较和分析了不同土地利用方式下地表CH4,和N2O通量的季节变化,地表CH4和N2O通量与温度和土壤含水量的关系以及凋落物对地表CH4和N2O通量的影响.结果表明,在有凋落物覆盖下,马尾松林和果园年均地表CH4通量分别为-3.41±0.3和-3.24±0.44 kg CH,hm-2a-1;年均地表N2O通量分别为4.57±0.50和11.99±0.67 kg N2O-N hm-2a-1;去除凋落物情况下,马尾松林和果园年均地表CH4通量分别为-2.98±0.44和-1.93±0.53 kg CH4 hm-2a-1;年均地表N2O通量分别为3.12±0.28和9.42±0.56 kg N2O-N hm-2a-1.2种土地利用方式对地表CH4影响较小,对N2O通鼍的影响较大,果园地表N2O通量显著大于马尾松林(P<0.01).马尾松林和果园土壤对CH4的吸收在旱季(10~3月)高而雨季(4~9月)低,N2O排放雨季较高而旱季较低.土壤含水量对地表CH4和N2O通量的影响比温度要大.凋落物对地表CH4通量的影响较小,对N2O通量的影响较大,凋落物对马尾松林和果园N2O排放的贡献率分别为31.71%和21.40%.研究还表明,地表N2O)通量存在明显的降雨驱动效应.  相似文献   

6.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

7.
8.
We investigated the effects of elevated ozone concentration (E‐O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II‐you 084 (IIY084), under fully open‐air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A‐O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3‐induced reduction in the whole‐plant biomass (?13.2%), root biomass (?34.7%), and maximum tiller number (?10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E‐O3, a larger decrease in CH4 emission with IIY084 (?33.2%) than that with YD6 (?7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E‐O3. Additionally, E‐O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E‐O3 was not significantly different from those reported in open‐top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem.  相似文献   

9.
通过室内培养实验,研究了不同氮输入梯度下(N0:0mg·g-1,N1:0.1mg·g-1,N2:0.2mg·g-1,N3:0.5mg·g-1)湿地草甸沼泽土N2O排放和有机碳矿化特征,并分析了土壤微生物量碳、氮变化规律。整个培养期(23d)内,N0、N1、N2和N3处理N2O排放总量分别为91.12、133.02、147.75和303.45μg.kg-1,随氮输入量增大而增大,表明氮输入对N2O排放产生促进作用;氮输入处理的有机碳矿化速率在整个培养期除最后培养阶段外均低于对照,表明氮输入对有机碳矿化有一定的抑制作用;各氮输入处理土壤微生物量碳降低,与对照差异显著(P0.05),但各处理间差异未达到显著水平,土壤微生物量氮随氮输入量增大呈线性增加,各处理间差异显著(P0.05),表明氮输入影响土壤微生物结构和组成,具体影响机理须进一步探讨。  相似文献   

10.
Nitrous oxide emissions are of critical importance for the assumed climate neutrality of bio‐energy. In this study we report on the N2O fluxes from a bio‐energy poplar plantation measured with eddy covariance for 2 years, after conversion of agricultural fields to few months after harvesting of the plantation. A pulse peak of N2O was detected after the land use change and in the wake of the first heavy rainfall. The N2O‐N emission during just a single week was 2.7 kg N2O‐N ha?1 which represented approximately 42% of the total N2O‐N emitted during the 2 years of measurements. After this peak emission, N2O fluxes were constantly rather low, not increasing after rainfall events any longer. Lowest emissions (and even N2O sink) occurred mostly during the end of the second growing season with maximum canopy development, and water table deeper than 80 cm. Gross primary production (GPP) explained 68% of the monthly averaged variability in N2O emission from August to December 2011. Probably N uptake by vegetation during the peak of the second growing season limited N2O emission, which in fact increased again after the plantation was coppiced. For the majority of the measuring period, N2O fluxes did not present a well‐defined diurnal pattern, with the exception of two periods: (1) from 19–22 August 2010 and (2) from September–November 2011. In both cases wind speed played a major role in controlling the diurnal pattern in these fluxes (explaining up to 80% of the diurnal variability in N2O fluxes on 19–22 August 2010), whereas at the end of the second growing season (September–November 2011), GPP explained 73% of the diurnal pattern in N2O fluxes.  相似文献   

11.
在广东鹤山大叶相思(Acacia auriculaeformis)人工林内设置外来蚯蚓西土寒宪蚓(Ocnerodrilus occidentalis)和乡土植物三叉苦(Evodia lepta)野外控制实验,用静态箱-气相色谱法对土壤N2O和CH4通量进行15 d的原位测定,研究蚯蚓和三叉苦对土壤N2O和CH4通量的影响。结果表明,三叉苦并未明显增加土壤N2O和CH4的通量,而假植物(模拟三叉苦的物理效应)则显著促进了土壤N2O的释放通量。整个实验阶段,蚯蚓效应分别使无植物对照和三叉苦处理土壤N2O通量增加了26.7%和66.3%,而在种假植物条件下,添加蚯蚓使土壤N2O通量降低了39.7%;同时,蚯蚓效应使对照处理土壤CH4吸收通量增加了10.3%,使假植物处理土壤CH4吸收通量降低了90.6%,而使三叉苦处理土壤CH4释放通量增加了301.8%。可见,蚯蚓能够促进人工林土壤N2O释放;同时促进人工林土壤从CH4“汇”向“源”转变。三叉苦的物理过程促进土壤N2O的释放,而三叉苦的生物过程抑制土壤N2O的排放。如何减缓人工林中土壤N2O和CH4的排放,必须综合考虑植物物理过程、生物过程以及蚯蚓对土壤N2O和CH4排放过程影响的独立效应和交互效应。  相似文献   

12.
Climate and land‐use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2) and nitrous oxide (N2O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2) and six (N2O) orders of magnitude. Maximal CO2 and N2O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2O fluxes and altered their temperature sensitivities (Q10) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2O flux, while significantly depressing the Q10 for CO2, and having no effect on the Q10 for N2O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions.  相似文献   

13.
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open‐path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous‐wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20–50 nmol m?2 s?1 compared with a <5 nmol m?2 s?1 background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re‐sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m?2 s?1). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi‐species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.  相似文献   

14.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness.  相似文献   

15.
Nitrogen availability in terrestrial ecosystems strongly influences plant productivity and nutrient cycling in response to increasing atmospheric carbon dioxide (CO2). Elevated CO2 has consistently stimulated forest productivity at the Duke Forest free‐air CO2 enrichment experiment throughout the decade‐long experiment. It remains unclear how the N cycle has changed with elevated CO2 to support this increased productivity. Using natural‐abundance measures of N isotopes together with an ecosystem‐scale 15N tracer experiment, we quantified the cycling of 15N in plant and soil pools under ambient and elevated CO2 over three growing seasons to determine how elevated CO2 changed N cycling between plants, soil, and microorganisms. After measuring natural‐abundance 15N differences in ambient and CO2‐fumigated plots, we applied inorganic 15N tracers and quantified the redistribution of 15N for three subsequent growing seasons. The natural abundance of leaf litter was enriched under elevated compared to ambient CO2, consistent with deeper rooting and enhanced N mineralization. After tracer application, 15N was initially retained in the organic and mineral soil horizons. Recovery of 15N in plant biomass was 3.5 ± 0.5% in the canopy, 1.7 ± 0.2% in roots and 1.7 ± 0.2% in branches. After two growing seasons, 15N recoveries in biomass and soil pools were not significantly different between CO2 treatments, despite greater total N uptake under elevated CO2. After the third growing season, 15N recovery in trees was significantly higher in elevated compared to ambient CO2. Natural‐abundance 15N and tracer results, taken together, suggest that trees growing under elevated CO2 acquired additional soil N resources to support increased plant growth. Our study provides an integrated understanding of elevated CO2 effects on N cycling in the Duke Forest and provides a basis for inferring how C and N cycling in this forest may respond to elevated CO2 beyond the decadal time scale.  相似文献   

16.
Climate change reduces the net sink of CH4 and N2O in a semiarid grassland   总被引:1,自引:0,他引:1  
Atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have increased over the last 150 years because of human activity. Soils are important sources and sinks of both potent greenhouse gases where their production and consumption are largely regulated by biological processes. Climate change could alter these processes thereby affecting both rate and direction of their exchange with the atmosphere. We examined how a rise in atmospheric CO2 and temperature affected CH4 and N2O fluxes in a well‐drained upland soil (volumetric water content ranging between 6% and 23%) in a semiarid grassland during five growing seasons. We hypothesized that responses of CH4 and N2O fluxes to elevated CO2 and warming would be driven primarily by treatment effects on soil moisture. Previously we showed that elevated CO2 increased and warming decreased soil moisture in this grassland. We therefore expected that elevated CO2 and warming would have opposing effects on CH4 and N2O fluxes. Methane was taken up throughout the growing season in all 5 years. A bell‐shaped relationship was observed with soil moisture with highest CH4 uptake at intermediate soil moisture. Both N2O emission and uptake occurred at our site with some years showing cumulative N2O emission and other years showing cumulative N2O uptake. Nitrous oxide exchange switched from net uptake to net emission with increasing soil moisture. In contrast to our hypothesis, both elevated CO2 and warming reduced the sink of CH4 and N2O expressed in CO2 equivalents (across 5 years by 7% and 11% for elevated CO2 and warming respectively) suggesting that soil moisture changes were not solely responsible for this reduction. We conclude that in a future climate this semiarid grassland may become a smaller sink for atmospheric CH4 and N2O expressed in CO2‐equivalents.  相似文献   

17.
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha?1 yr?1 corn straw (CS) amendment, and 2.4 t ha?1 yr?1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg?1 grain) than that of Control (0.24 kg CO2‐Ckg?1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ckg?1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter.  相似文献   

18.
长白山阔叶红松林土壤氮化亚氮和甲烷的通量研究   总被引:11,自引:1,他引:10  
采用静态箱/气相色谱分析方法对长白山阔叶红松林两个处理的N2O和CH4通量进行了研究.结果表明,凋落物对土壤N2O排放和CH4吸收的影响是显著的,影响程度分别是36.9%和23.4%.两个处理的N2O排放通量季节变化趋势相似:夏季(6~8月)的排放通量最高,春季(3~5月)次之,秋(9~11月)冬(12~1月)两季较低.其日变化趋势也相似:最大值都出现在18:00,最小值都出现在12:00和14:00.CH4吸收通量的季节变化趋势也很相似:夏秋两季的吸收通量明显高于春冬两季的吸收通量.其日变化趋势也相似:从14:00开始持续上升到18:00达到最大值,然后持续下降到早晨6:00达到通量的最小值.研究还发现,长白山阔叶红松林土壤的N2O排放和CH4吸收间存在着一种负线性相关关系.  相似文献   

19.
Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant–microbe–mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant‐derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial‐derived C in the silt‐clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above‐ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0–5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata‐invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co‐metabolism of pine‐derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems.  相似文献   

20.
外源氮对沼泽湿地CH4和N2O通量的影响   总被引:4,自引:0,他引:4  
三江平原沼泽湿地受到大气沉降、地表径流、农业排水等外源氮素的输入,对湿地生态系统CH4和N2O通量有重要影响。采用野外原位施肥试验模拟外源氮输入,设0,60,120,240kgN·hm^-24种试验处理,探讨外源氮对沼泽湿地CH4和N2O通量的影响。结果表明,外源氮促进了CH4和N2O排放。与对照处理比较,各施氮水平CH4平均排放通量分别增加了181%,254%和155%,N2O排放通量分别增加了21%,100%和533%。外源氮输入对CH4排放的季节变化形式影响不大,而N2O的季节变化形式随着氮输入表现出波动变化的趋势。不同施氮水平对CH4排放的促进作用与植物生长阶段和产CH4的微生物过程密切相关,N2O排放通量随氮输入量呈指数增加(R^2=0.97,P〈0.01)。外源氮通过影响湿地微生物过程来进一步影响CH4和N2O的排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号