首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Aim

Many freshwater fishes are migrating poleward to more thermally suitable habitats in response to warming climates. In this study, we aimed to identify which freshwater fishes are most sensitive to climatic changes and asked: (i) how fast are lakes warming? (ii) how fast are fishes moving? and (iii) are freshwater fishes tracking climate?

Location

Ontario, Canada.

Methods

We assembled a database containing time series data on climate and species occurrence data from 10,732 lakes between 1986 and 2017. We calculated the rate of lake warming and climate velocity for these lakes. Climate velocities were compared with biotic velocities, specifically the rate at which the northernmost extent of each species shifted north.

Results

Lakes in Ontario warmed by 0.2°C decade−1 on average, at a climate velocity of 9.4 km decade−1 between 1986 and 2017. In response, some freshwater fishes have shifted their northern range boundaries with considerable interspecific variation ranging from species moving southwards at a rate of −58.9 km decade−1 to species ranges moving northwards at a rate of 83.6 km decade−1 over the same time period. More freshwater fish species are moving into northern lakes in Ontario than those being lost. Generally, predators are moving their range edges northwards, whereas prey fishes are being lost from northern lakes.

Main Conclusions

The concurrent loss of cooler refugia, combined with antagonistic competitive and predatory interactions with the range expanding species, has resulted in many commercially important predators moving their range edges northwards, whereas prey species have contracted their northern range edge boundaries. Trophic partitioning of range shifts highlights a previously undocumented observation of the loss of freshwater fishes from lower trophic levels in response to climate-driven migrations.  相似文献   

2.
Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry‐season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry‐season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local‐scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad‐scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.  相似文献   

3.
A long‐standing macroecological hypothesis posits that species range limits are primarily determined by abiotic factors (e.g. climate) at poleward boundaries and biotic factors (e.g. competition) at equatorward boundaries. Using correlative environmental niche models we test this hypothesis for 214 amphibian and reptile species endemic to the United States (U.S.). As predicted, we find a closer association between climate and northern (poleward) range limits than at southern (equatorward) boundaries. However when we separately analyze amphibians and reptiles, only reptiles show the predicted pattern; amphibians show the opposite pattern. We also find more unoccupied, but climatically habitable, area beyond species’ southern range limits for reptiles but not amphibians. This suggests that factors other than climate limit distributions at southern boundaries for reptiles and at northern boundaries for amphibians. These contrasting results suggest that even in the same biogeographic regions, this macroecological hypothesis does not hold. Further studies should investigate, preferably via experimental approaches, the proximate and ultimate mechanisms responsible for range limits.  相似文献   

4.
5.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

6.

Background

The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity.

Scope

This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies.

Conclusions

Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation.  相似文献   

7.
In a literature-based study, 29 non-indigenous species present in northeastern European waters were assessed for their potential for introduction and establishment in Finnish inland lakes. Their physiological and ecological demands were compared to abiotic and biotic lake conditions. The availability of adequate vectors was surveyed from shipping statistics for the Saimaa Canal, which connects the Finnish Lake District to the Baltic Sea. There exists a high probability for the introduction of six non-indigenous invertebrate species, i.e., Anguillicola crassus, Potamothrix heuscheri, Potamothrix vejdovskyi, Hemimysis anomala, Cercopagis pengoi and Gmelinoides fasciatus, with the Gulf of Finland as the main donor area. Barriers against new species introductions, which maintain the biological integrity of Finnish inland lakes, include low water temperature, northern isolated location, and low concentration of nutrients and major ions.  相似文献   

8.

Aim

To measure the effects of including biotic interactions on climate‐based species distribution models (SDMs) used to predict distribution shifts under climate change. We evaluated the performance of distribution models for an endangered marsupial, the northern bettong (Bettongia tropica), comparing models that used only climate variables with models that also took into account biotic interactions.

Location

North‐east Queensland, Australia.

Methods

We developed separate climate‐based distribution models for the northern bettong, its two main resources and a competitor species. We then constructed models for the northern bettong by including climate suitability estimates for the resources and competitor as additional predictor variables to make climate + resource and climate + resource + competition models. We projected these models onto seven future climate scenarios and compared predictions of northern bettong distribution made by these differently structured models, using a ‘global’ metric, the I similarity statistic, to measure overlap in distribution and a ‘local’ metric to identify where predictions differed significantly.

Results

Inclusion of food resource biotic interactions improved model performance. Over moderate climate changes, up to 3.0 °C of warming, the climate‐only model for the northern bettong gave similar predictions of distribution to the more complex models including interactions, with differences only at the margins of predicted distributions. For climate changes beyond 3.0 °C, model predictions diverged significantly. The interactive model predicted less contraction of distribution than the simpler climate‐only model.

Main conclusions

Distribution models that account for interactions with other species, in particular direct resources, improve model predictions in the present‐day climate. For larger climate changes, shifts in distribution of interacting species cause predictions of interactive models to diverge from climate‐only models. Incorporating interactions with other species in SDMs may be needed for long‐term prediction of changes in distribution of species under climate change, particularly for specialized species strongly dependent on a small number of biotic interactions.  相似文献   

9.
Species distribution modeling was used to determine factors among the large predictor candidate data set that affect the distribution of Muscari latifolium , an endemic bulbous plant species of Turkey, to quantify the relative importance of each factor and make a potential spatial distribution map of M. latifolium . Models were built using the Boosted Regression Trees method based on 35 presence and 70 absence records obtained through field sampling in the Gönen Dam watershed area of the Kazda?? Mountains in West Anatolia. Large candidate variables of monthly and seasonal climate, fine‐scale land surface, and geologic and biotic variables were simplified using a BRT simplifying procedure. Analyses performed on these resources, direct and indirect variables showed that there were 14 main factors that influence the species’ distribution. Five of the 14 most important variables influencing the distribution of the species are bedrock type, Quercus cerris density, precipitation during the wettest month, Pinus nigra density, and northness. These variables account for approximately 60% of the relative importance for determining the distribution of the species. Prediction performance was assessed by 10 random subsample data sets and gave a maximum the area under a receiver operating characteristic curve (AUC) value of 0.93 and an average AUC value of 0.8. This study provides a significant contribution to the knowledge of the habitat requirements and ecological characteristics of this species. The distribution of this species is explained by a combination of biotic and abiotic factors. Hence, using biotic interaction and fine‐scale land surface variables in species distribution models improved the accuracy and precision of the model. The knowledge of the relationships between distribution patterns and environmental factors and biotic interaction of M. latifolium can help develop a management and conservation strategy for this species.  相似文献   

10.
Mechanistic insights from invasion biology indicate that propagule pressure of exotic species and native community structure can independently influence establishment success. The role of native community connectivity via species dispersal and its potential interaction with propagule pressure on invasion success in metacommunities, however, remains unknown. Native community connectivity may increase biotic resistance to invasion by enhancing species richness and evenness, but the effects could depend upon the level of propagule pressure. In this study, a mesocosm experiment was used to evaluate the independent and combined effects of exotic propagule pressure and native community connectivity on invasion success. The effects of three levels of exotic Daphnia lumholtzi propagule pressure on establishment success, community structure and ecosystem attributes were evaluated in native zooplankton communities connected by species dispersal versus unconnected communities, and relative to a control without native species. Establishment of the exotic species exhibited a propagule dose‐dependent relationship with high levels of propagule pressure resulting in the greatest establishment success. Native community connectivity, however, effectively reduced establishment at the low level of propagule pressure and further augmented native species richness across propagule pressure treatments. Propagule pressure largely determined the negative impacts of the exotic species on native species richness, native biomass and edible producer biomass. The results highlight that native community connectivity can reduce invasion success at a low propagule dose and decrease extinction risk of native competitors, but high propagule pressure can overcome connectivity‐mediated biotic resistance to influence establishment and impact of the exotic species. Together, the results emphasize the importance of the interaction of propagule pressure and community connectivity as a regulator of invasion success, and argue for the maintenance of metacommunity connectivity to confer invasion resistance.  相似文献   

11.
12.

Aim

A current biogeographic paradigm states that climate regulates species distributions at continental scales and that biotic interactions are undetectable at coarse-grain extents. However, advances in spatial modelling show that incorporating food resource distributions are important for improving model predictions at large distribution scales. This is particularly relevant to understand the factors limiting the distribution of widespread apex predators whose diets are likely to vary across their range.

Location

Neotropical Central and South America.

Methods

The harpy eagle (Harpia harpyja) is a large raptor, whose diet is largely comprised of arboreal mammals, all with broad distributions across Neotropical lowland forest. Here, we used a hierarchical modelling approach to determine the relative importance of abiotic factors and prey resource distribution on harpy eagle range limits. Our hierarchical approach consisted of the following modelling sequence of explanatory variables: (a) abiotic covariates, (b) prey resource distributions predicted by an equivalent modelling for each prey, (c) the combination of (a) and (b), and (d) as in (c) but with prey resources considered as a single prediction equivalent to prey species richness.

Results

Incorporating prey distributions improved model predictions but using solely biotic covariates still resulted in a high-performing model. In the Abiotic model, Climatic Moisture Index (CMI) was the most important predictor, contributing 76% to model prediction. Three-toed sloth (Bradypus spp.) was the most important prey resource, contributing 64% in a combined Abiotic-Biotic model, followed by CMI contributing 30%. Harpy eagle distribution had high environmental overlap across all individual prey distributions, with highest coincidence through Central America, eastern Colombia, and across the Guiana Shield into northern Amazonia.

Main Conclusions

With strong reliance on prey distributions across its range, harpy eagle conservation programmes must therefore consider its most important food resources as a key element in the protection of this threatened raptor.  相似文献   

13.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

14.
We assessed the effects of both biotic processes and abiotic factors on the community composition of vascular plant species and invertebrates at a site in northern Norway. Plant species were assigned to functional (woody versus herbaceous) and biogeographic (boreal versus alpine) groups. Invertebrate species were classified as either herbivore or predator. When species interactions and effects of the abiotic environment were partitioned, boreal species appeared to influence the distribution of alpine species and woody species the distribution of herbaceous species. Analysis of partial correlations indicated that facilitation was the dominant mode of interaction between the two pairs of plant groups. Among abiotic factors, the thermal environment probably influenced all components of the plant and invertebrate communities, except for predatory invertebrates, and wind appeared important in determining the composition of woody and alpine components of the plant community but not the herbaceous component. The composition of the boreal component of the plant community apparently influenced the composition of all invertebrate communities, except for predatory invertebrates. The composition of the woody component of the plant community influenced the composition of both herbivore and predator communities. The alpine plant-community composition influenced predatory invertebrate community composition. Woody plant community composition influenced the composition of both herbivore and predator communities. Our analytic approach, based on two kinds of structural equation models (d-separation and path analysis), provides a useful method for identifying the biotic as well as abiotic factors that influence community structure.  相似文献   

15.
16.
Aim Explaining why some invasions fail while others succeed is a prevailing question in invasion biology. Different factors have been proposed to explain the success or failure of exotics. Evidence suggests that climate similarities may be crucial. We tested this using 12 species of the genus Pinus that have been widely planted and shown to be highly invasive. Pinus is among the best‐studied group of exotic species and one that has been widely introduced world‐wide, so we were able to obtain data on invasive and non‐invasive introductions (i.e. unsuccessful invasions; areas where after many decades of self‐sowing seeds there is no invasion). Location World‐wide. Methods We developed species distribution models for native ranges using a maximum entropy algorithm and projected them across the globe. We tested whether climate‐based models were able to predict both invasive and non‐invasive introductions. Results Appropriate climatic conditions seem to be required for these long‐lived species to invade because climates accurately predicted invasions. However, climate matching is necessary, but not sufficient to predict the fate of an introduction because most non‐invasive introductions were predicted to have triggered an invasion. Main conclusions Other factors, possibly including biotic components, may be the key to explaining why some introductions do not become invasions, because many areas where Pinus is not invading were predicted to be suitable for invasion based solely on climate.  相似文献   

17.
Identifying the processes by which new phenotypes and species emerge has been a long‐standing effort in evolutionary biology. Young adaptive radiations provide a model to study patterns of morphological and ecological diversification in environmental context. Here, we use the recent radiation (ca. 12k years old) of the freshwater fish Arctic charr (Salvelinus alpinus) to identify abiotic and biotic environmental factors associated with adaptive morphological variation. Arctic charr are exceptionally diverse, and in postglacial lakes there is strong evidence of repeated parallel evolution of similar morphologies associated with foraging. We measured head depth (a trait reflecting general eco‐morphology and foraging ecology) of 1,091 individuals across 30 lake populations to test whether fish morphological variation was associated with lake bathymetry and/or ecological parameters. Across populations, we found a significant relationship between the variation in head depth of the charr and abiotic environmental characteristics: positively with ecosystem size (i.e., lake volume, surface area, depth) and negatively with the amount of littoral zone. In addition, extremely robust‐headed phenotypes tended to be associated with larger and deeper lakes. We identified no influence of co‐existing biotic community on Arctic charr trophic morphology. This study evidences the role of the extrinsic environment as a facilitator of rapid eco‐morphological diversification.  相似文献   

18.
Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large‐scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (~9%) compared to the contribution of each predictor set individually (~20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo‐climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.  相似文献   

19.
In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement‐related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non‐free‐living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum‐Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum‐Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This approach can also be implemented in other systems where the target species is closely interacting with other taxa.  相似文献   

20.
Population size structure and maximum size of managed sportfish populations are dictated by abiotic, biotic, ecosystem, and anthropogenic influences. In their native ranges of northern Wisconsin, muskellunge (Esox masquinongy) and cisco (Coregonus artedi) are co-adapted cool- and cold-water species where cisco presence may influence population size structure and maximum size of muskellunge. We tested whether muskellunge size structure indices (length-frequency distributions, proportional size distribution), mean length, and mean maximum length of muskellunge differed when cisco were present or absent in Ceded Territory of Wisconsin (CTWI) lakes during 2015–2018. Cisco presence had a positive influence on size structure and mean length of individual muskellunge within populations. In contrast, cisco presence had no influence on the mean maximum length of muskellunge observed in CTWI populations suggesting that other factors may be better predictors of this metric than cisco presence. In cisco lakes, mean muskellunge length was negatively correlated with mean cisco length suggesting that gape limitation may be a factor influencing population size structure and individual growth rates. Therefore, cisco populations with primarily large individuals may be unavailable to muskellunge as forage. Our results suggest that cisco are an important forage species for some aspects of muskellunge population ecology; however, other factors may also contribute to muskellunge population size structure and maximum size outcomes. As such, conservation of remaining cisco populations in Wisconsin is critical because they influence muskellunge population ecology in lakes where the species coexist. Future research is needed to better understand the interactions of cisco, abiotic and biotic factors, and anthropogenic influences on muskellunge growth dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号