首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human‐induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME‐BGC, as well as the legacy effect of the current age‐class distribution (forest inventories and BIOME‐BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available. The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations. According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha?1 yr?1 with an averaged annual NEP of 1.42 t C ha?1 yr?1 and total net biome production of 1.03 t C ha?1 yr?1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate‐harvest) was 1.12 t C ha?1 yr?1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha?1 yr?1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age‐class distribution to account for 17% of the inventory‐based sink. Isolating the environmental change effects showed that these effects can be large in a long‐term, managed conifer forest.  相似文献   

2.
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha?1 year?1, 95% Bayesian confidence interval (CI), 1.22–1.68) and early‐successional coniferous forests (ESC) (1.42, CI, 1.30–1.56) than mixed forests (MIX) (0.80, CI, 0.50–1.11) and late‐successional coniferous (LSC) forests (0.62, CI, 0.39–0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha?1 year?1 per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha?1 year?1 in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha?1 year?1 in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late‐successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.  相似文献   

3.
Deadwood is a major component of aboveground biomass (AGB) in tropical forests and is important as habitat and for nutrient cycling and carbon storage. With deforestation and degradation taking place throughout the tropics, improved understanding of the magnitude and spatial variation in deadwood is vital for the development of regional and global carbon budgets. However, this potentially important carbon pool is poorly quantified in Afrotropical forests and the regional drivers of deadwood stocks are unknown. In the first large‐scale study of deadwood in Central Africa, we quantified stocks in 47 forest sites across Gabon and evaluated the effects of disturbance (logging), forest structure variables (live AGB, wood density, abundance of large trees), and abiotic variables (temperature, precipitation, seasonality). Average deadwood stocks (measured as necromass, the biomass of deadwood) were 65 Mg ha?1 or 23% of live AGB. Deadwood stocks varied spatially with disturbance and forest structure, but not abiotic variables. Deadwood stocks increased significantly with logging (+38 Mg ha?1) and the abundance of large trees (+2.4 Mg ha?1 for every tree >60 cm dbh). Gabon holds 0.74 Pg C, or 21% of total aboveground carbon in deadwood, a threefold increase over previous estimates. Importantly, deadwood densities in Gabon are comparable to those in the Neotropics and respond similarly to logging, but represent a lower proportion of live AGB (median of 18% in Gabon compared to 26% in the Neotropics). In forest carbon accounting, necromass is often assumed to be a constant proportion (9%) of biomass, but in humid tropical forests this ratio varies from 2% in undisturbed forest to 300% in logged forest. Because logging significantly increases the deadwood carbon pool, estimates of tropical forest carbon should at a minimum use different ratios for logged (mean of 30%) and unlogged forests (mean of 18%).  相似文献   

4.
Evaluating contributions of forest ecosystems to climate change mitigation requires well‐calibrated carbon cycle models with quantified baseline carbon stocks. An appropriate baseline for carbon accounting of natural forests at landscape scales is carbon carrying capacity (CCC); defined as the mass of carbon stored in an ecosystem under prevailing environmental conditions and natural disturbance regimes but excluding anthropogenic disturbance. Carbon models require empirical measurements for input and calibration, such as net primary production (NPP) and total ecosystem carbon stock (equivalent to CCC at equilibrium). We sought to improve model calibration by addressing three sources of errors that cause uncertainty in carbon accounting across heterogeneous landscapes: (1) data‐model representation, (2) data‐object representation, (3) up‐scaling. We derived spatially explicit empirical models based on environmental variables across landscape scales to estimate NPP (based on a synthesis of global site data of NPP and gross primary productivity, n=27), and CCC (based on site data of carbon stocks in natural eucalypt forests of southeast Australia, n=284). The models significantly improved predictions, each accounting for 51% of the variance. Our methods to reduce uncertainty in baseline carbon stocks, such as using appropriate calibration data from sites with minimal human disturbance, measurements of large trees and incorporating environmental variability across the landscape, have generic application to other regions and ecosystem types. These analyses resulted in forest CCC in southeast Australia (mean total biomass of 360 t C ha?1, with cool moist temperate forests up to 1000 t C ha?1) that are larger than estimates from other national and international (average biome 202 t C ha?1) carbon accounting systems. Reducing uncertainty in estimates of carbon stocks in natural forests is important to allow accurate accounting for losses of carbon due to human activities and sequestration of carbon by forest growth.  相似文献   

5.
The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km2 area, over 750 000 km2 of forest and ~240 000 km2 of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's ‘Legal Amazonia’ and ‘Amazonia biome’ regions. Biomass of ‘premodern’ vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250 000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1‐ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below‐ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha?1 when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts.  相似文献   

6.
The boreal forest is expected to experience the greatest warming of all forest biomes. The extent of the boreal forest, the large amount of carbon contained in the soil, and the expected climate warming, make the boreal forest a key biome to understand and represent correctly in global carbon models. It has been suggested that an increase in temperature could stimulate the release of CO2 caused by an increased decomposition rate, more than biomass production, which could convert current carbon sinks into carbon sources. Most boreal forests are currently carbon sinks, but it is unclear for how long in the future the carbon sink capacity of the boreal forest is likely to be maintained. The impact of soil warming on stem volume growth was studied during 6 years, in irrigated (I) and irrigated‐fertilized (IL) stands of 40‐year‐old Norway spruce in Northern Sweden. From May to October heating cables were used to maintain the soil temperature on heated‐irrigated plots (Ih and ILh) 5 °C above that on unheated control plots (Ic and ILc). After six seasons' warming, stem volume production (m3 ha?1 a?1) was 115% higher on Ih than on unheated (Ic) plots, and on heated and irrigated‐fertilized plots (ILh) it was 57% higher than on unheated plots (ILc). The results indicate that in a future warmer climate, an increased availability of nitrogen, combined with a longer growing season, may increase biomass production substantially, on both low‐ and high‐fertility sites. It is, however, too early to decide whether the observed responses are transitory or long lasting. It is therefore crucial to gain a better understanding of the responses of boreal forest ecosystems to climate change, and to provide data to test and validate models used in predicting the impact of climate change.  相似文献   

7.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.  相似文献   

8.
Carbon emissions from tropical land‐use change are a major uncertainty in the global carbon cycle. In African woodlands, small‐scale farming and the need for fuel are thought to be reducing vegetation carbon stocks, but quantification of these processes is hindered by the limitations of optical remote sensing and a lack of ground data. Here, we present a method for mapping vegetation carbon stocks and their changes over a 3‐year period in a > 1000 km2 region in central Mozambique at 0.06 ha resolution. L‐band synthetic aperture radar imagery and an inventory of 96 plots are combined using regression and bootstrapping to generate biomass maps with known uncertainties. The resultant maps have sufficient accuracy to be capable of detecting changes in forest carbon stocks of as little as 12 MgC ha?1 over 3 years with 95% confidence. This allows characterization of biomass loss from deforestation and forest degradation at a new level of detail. Total aboveground biomass in the study area was reduced by 6.9 ± 4.6% over 3 years: from 2.13 ± 0.12 TgC in 2007 to 1.98 ± 0.11 TgC in 2010, a loss of 0.15 ± 0.10 TgC. Degradation probably contributed 67% (96.9 ± 91.0 GgC) of the net loss of biomass, but is associated with high uncertainty. The detailed mapping of carbon stock changes quantifies the nature of small‐scale farming. New clearances were on average small (median 0.2 ha) and were often additions to already cleared land. Deforestation events reduced biomass from 33.5 to 11.9 MgC ha?1 on average. Contrary to expectations, we did not find evidence that clearances were targeted towards areas of high biomass. Our method is scalable and suitable for monitoring land cover change and vegetation carbon stocks in woodland ecosystems, and can support policy approaches towards reducing emissions from deforestation and degradation (REDD).  相似文献   

9.
Using biomass for charcoal production in sub-Saharan Africa (SSA) may change carbon stock dynamics and lead to irreversible changes in the carbon balance, yet we have little understanding of whether these dynamics vary by biome in this region. Currently, charcoal production contributes up to 7% of yearly deforestation in tropical regions, with carbon emissions corresponding to 71.2 million tonnes of CO2 and 1.3 million tonnes of CH4. With a projected increased demand for charcoal in the coming decades, even low harvest rates may throw the carbon budget off-balance due to legacy effects. Here, we parameterized the dynamic global vegetation model LPJ-GUESS for six SSA biomes and examined the effect of charcoal production on net ecosystem exchange (NEE), carbon stock sizes and recovery time for tropical rain forest, montane forest, moist savanna, dry savanna, temperate grassland and semi-desert. Under historical charcoal regimes, tropical rain forests and montane forests transitioned from net carbon sinks to net sources, that is, mean cumulative NEE from −3.56 ± 2.59 kg C/m2 to 2.46 ± 3.43 kg C/m2 and −2.73 ± 2.80 kg C/m2 to 1.87 ± 4.94 kg C/m2 respectively. Varying charcoal production intensities resulted in tropical rain forests showing at least two times higher carbon losses than the other biomes. Biome recovery time varied by carbon stock, with tropical and montane forests taking about 10 times longer than the fast recovery observed for semi-desert and temperate grasslands. Our findings show that high biomass biomes are disproportionately affected by biomass harvesting for charcoal, and even low harvesting rates strongly affect vegetation and litter carbon and their contribution to the carbon budget. Therefore, the prolonged biome recoveries imply that current charcoal production practices in SSA are not sustainable, especially in tropical rain forests and montane forests, where we observe longer recovery for vegetation and litter carbon stocks.  相似文献   

10.
2004-2013年山东省森林碳储量及其碳汇经济价值   总被引:3,自引:0,他引:3  
森林作为陆地生态系统的主体,其林分碳储量及其碳汇经济价值的估算是全球碳循环研究的热点和重要内容。基于2004-2008年和2009-2013年山东省森林资源清查数据以及实测样地数据改进的生物量蓄积量转换参数,利用生物量转换因子连续函数法,估算2004-2013年山东省森林碳储量及其碳汇经济价值动态。研究结果表明,2004-2013年山东省森林面积、碳储量和碳密度分别从2004-2008年的156.12×104hm2、34.75Tg C和22.26Mg C/hm2增加到2009-2013年161.44×104hm2、43.98Tg C和27.24Mg C/hm2。人工林是森林面积、碳储量和碳密度增加的主要贡献者,人工林和天然林对森林生物量碳汇的贡献分别为97.3%和2.7%。两次森林清查期间,杨树和硬阔软阔类森林的碳储量之和分别占全省总量的70.2%和69.6%,杨树的碳储量和碳密度增加最为显著。各龄组森林碳储量由大到小依次为:幼龄林 > 中龄林 > 成熟林 > 近熟林 > 过熟林。森林碳汇经济价值从2004-2008年的243.37亿元增长到2009-2013年的253.42亿元,年均增长2.01亿元,杨树的碳汇经济价值占全省所有森林类型的60%,赤松单位面积碳汇经济价值最强为2.08万元/ha。  相似文献   

11.
Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 106 ha and 38.6 Mg C ha?1 in the 1970s to 196.65 × 106 ha and 45.5 Mg C ha?1 in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr?1. Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr?1, equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil‐fuel CO2 emissions.  相似文献   

12.
Abstract

Recent attempts to mitigate global change have brought forestry-based carbon (C) sequestration into sharp focus due to its potential to absorb CO2 from the atmosphere. However, the consequences of actual forest management practices on C storage capacity are still controversial to a certain extent. Under such a perspective, a distinctive relevant issue concerns the management of forest ecosystems within areas specifically designated for nature conservation. From the analysis of biomass data from forests in the National Parks of Italy, we found that the average forest C stock and sink per unit area is relatively higher within National Parks (81.21 and 2.18 tons ha?1, respectively) than on the overall national territory (76.11 and 1.12 tons ha?1 year?1, respectively). The analysis confirms the influence of ecological conditions and management approach on C sequestration capacity. Although the results of the proposed assessment approach have to be considered as rough estimates, the trial proves interesting, given the relative lack of specific information, at least on a large scale, about C stocks and sinks within forest areas designated for nature conservation, and the direct comparison with those forest areas not designated to such an end. The C storage capacity can be enhanced by increasing the productivity of forests, minimizing the disturbance to stand structure and composition. Extending conservation strategies adopted in National Parks to other forest areas of the national territory would allow the restoration of C sequestration potential, where unsustainable management practices have degraded relatively large stocks of biomass.  相似文献   

13.
Natural forests in South‐East Asia have been extensively converted into other land‐use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large‐scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal) in above‐ and belowground tree biomass in land‐use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above‐ and belowground carbon pools in tree biomass together with NPPtotal in natural old‐growth forests, ‘jungle rubber’ agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land‐use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha?1) was more than two times higher than in jungle rubber stands (147 Mg ha?1) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha?1). NPPtotal was higher in the natural forest (24 Mg ha?1 yr?1) than in the rubber systems (20 and 15 Mg ha?1 yr?1), but was highest in the oil palm system (33 Mg ha?1 yr?1) due to very high fruit production (15–20 Mg ha?1 yr?1). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha?1) but also in carbon sequestration as carbon residence time (i.e. biomass‐C:NPP‐C) was 3–10 times higher in the natural forest than in rubber and oil palm plantations.  相似文献   

14.
Approximately half of the tropical biome is in some stage of recovery from past human disturbance, most of which is in secondary forests growing on abandoned agricultural lands and pastures. Reforestation of these abandoned lands, both natural and managed, has been proposed as a means to help offset increasing carbon emissions to the atmosphere. In this paper we discuss the potential of these forests to serve as sinks for atmospheric carbon dioxide in aboveground biomass and soils. A review of literature data shows that aboveground biomass increases at a rate of 6.2 Mg ha? 1 yr? 1 during the first 20 years of succession, and at a rate of 2.9 Mg ha? 1 yr? 1 over the first 80 years of regrowth. During the first 20 years of regrowth, forests in wet life zones have the fastest rate of aboveground carbon accumulation with reforestation, followed by dry and moist forests. Soil carbon accumulated at a rate of 0.41 Mg ha? 1 yr? 1 over a 100‐year period, and at faster rates during the first 20 years (1.30 Mg carbon ha? 1 yr? 1 ). Past land use affects the rate of both above‐ and belowground carbon sequestration. Forests growing on abandoned agricultural land accumulate biomass faster than other past land uses, while soil carbon accumulates faster on sites that were cleared but not developed, and on pasture sites. Our results indicate that tropical reforestation has the potential to serve as a carbon offset mechanism both above‐ and belowground for at least 40 to 80 years, and possibly much longer. More research is needed to determine the potential for longer‐term carbon sequestration for mitigation of atmospheric CO2 emissions.  相似文献   

15.
Uncertainty about the mechanisms driving biomass change at broad spatial scales limits our ability to predict the response of forest biomass storage to global change. Here we use a spatially representative network of 874 forest plots in New Zealand to examine whether commonly hypothesised drivers of forest biomass and biomass change (diversity, disturbance, nutrients and climate) differ between old-growth and secondary forests at a national scale. We calculate biomass stocks and net biomass change for live above-ground biomass, below-ground biomass, deadwood and litter pools. We combine these data with plot-level information on forest type, tree diversity, plant functional traits, climate and disturbance history, and use structural equation models to identify the major drivers of biomass change. Over the period 2002–2014, secondary forest biomass increased by 2.78 (1.68–3.89) Mg ha?1 y?1, whereas no significant change was detected in old-growth forests (+0.28; ?0.72 to 1.29 Mg ha?1 y?1). The drivers of biomass and biomass change differed between secondary and old-growth forests. Plot-level biomass change of old-growth forest was driven by recent disturbance (large tree mortality within the last decade), whereas biomass change of secondary forest was determined by current biomass and past anthropogenic disturbance. Climate indirectly affected biomass change through its relationship with past anthropogenic disturbance. Our results highlight the importance of disturbance and disturbance history in determining broad-scale patterns of forest biomass change and suggest that explicitly modelling processes driving biomass change within secondary and old-growth forests is essential for predicting future changes in global forest biomass.  相似文献   

16.
17.

Aim

Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate aboveground biomass (AGB) and biomass dynamics (i.e., net biomass productivity and its underlying demographic drivers: biomass recruitment, growth and mortality) to forest attributes (tree diversity, community‐mean traits and stand basal area) and environmental conditions (water availability, soil fertility and disturbance).

Location

Neotropics.

Methods

We used data from 26 sites, 201 1‐ha plots and >92,000 trees distributed across the Neotropics. We quantified for each site water availability and soil total exchangeable bases and for each plot three key community‐weighted mean functional traits that are important for biomass stocks and productivity. We used structural equation models to test the hypothesis that all drivers have independent, positive effects on biomass stocks and dynamics.

Results

Of the relationships analysed, vegetation attributes were more frequently associated significantly with biomass stocks and dynamics than environmental conditions (in 67 vs. 33% of the relationships). High climatic water availability increased biomass growth and stocks, light disturbance increased biomass growth, and soil bases had no effect. Rarefied tree species richness had consistent positive relationships with biomass stocks and dynamics, probably because of niche complementarity, but was not related to net biomass productivity. Community‐mean traits were good predictors of biomass stocks and dynamics.

Main conclusions

Water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might, therefore, potentially reduce carbon storage. Forest attributes, including species diversity and community‐weighted mean traits, have independent and important relationships with AGB stocks, dynamics and ecosystem functioning, not only in relatively simple temperate systems, but also in structurally complex hyper‐diverse tropical forests.  相似文献   

18.
Papua New Guinean forests (PNG), sequestering up to 3% of global forest carbon, are a focus of climate change mitigation initiatives, yet few field‐based studies have quantified forest biomass and carbon for lowland PNG forest. We provide an estimate for the 10 770 ha Wanang Conservation Area (WCA) to investigate the effect of calculation methodology and choice of allometric equation on estimates of above‐ground live biomass (AGLB) and carbon. We estimated AGLB and carbon from 43 nested plots at the WCA. Our biomass estimate of 292.2 Mg AGLB ha?1 (95% CI 233.4–350.6) and carbon at 137.3 Mg C ha?1 (95% CI 109.8–164.8) is higher than most estimates for PNG but lower than mean global estimates for tropical forest. Calculation method and choice of allometric model do not significantly influence mean biomass estimates; however, the most recently calibrated allometric equation generates estimates 13% higher for lower 95% confidence intervals of mean biomass than previous allometric models – a value often used as a conservative estimate of biomass. Although large trees at WCA (>70 cm diameter at breast height) accounted for 1/5 total biomass, their density was lower than that seen in SE Asian and Australia forests. Lower density of large trees accounts for lower AGLB than in neighbouring forests – as large trees contribute disproportionately to forest biomass. Reduced frequency of larger trees at WCA is explained by the lack of diversity of large dipterocarp species common to neighbouring SE Asian forests and, potentially, higher rates of local disturbance dynamics. PNG is susceptible to the El Niño Southern Oscillation (ENSO) extreme drought events to which large trees are particularly sensitive and, with still over 20% carbon in large trees, differential mortality under increasing ENSO drought stress raises the risk of PNG forest switching from carbon sink to source with reduced long‐term carbon storage capacity.  相似文献   

19.
The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest‐steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha?1, which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha?1) and total belowground carbon density (149 Mg C ha?1) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha?1, compared with 215 Mg C ha?1 in the forest interior. Carbon stock density in grasslands was 144 Mg C ha?1. Analysis of satellite imagery of the highly fragmented forest area in the forest‐steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km2, and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5?1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.  相似文献   

20.
Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long‐term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty‐nine soil cores to 1‐m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha?1 (2.24 ± 1.41 Mg C ha?1). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0–30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65–286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2–2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号