共查询到20条相似文献,搜索用时 15 毫秒
1.
Anna Barbanti Clara Martin Janice M. Blumenthal Jack Boyle Annette C. Broderick Lucy Collyer Gina Ebanks‐Petrie Brendan J. Godley Walter Mustin Víctor Ordez Marta Pascual Carlos Carreras 《Molecular ecology》2019,28(7):1637-1651
Ex situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by re‐introduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this re‐introduction programmme using molecular markers (13 microsatellites, 800‐bp D‐loop and simple tandem repeat mitochondrial DNA sequences) from captive breeders (N = 257) and wild nesting females (N = 57) (sampling period: 2013–2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 (“C1995”) and multicohort F1 (“MCF1”). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the re‐introduction programmme on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression. 相似文献
2.
Extreme temperatures can injure or kill organisms and can drive evolutionary patterns. Many indices of extremes have been proposed, but few attempts have been made to establish geographic patterns of extremes and to evaluate whether they align with geographic patterns in biological vulnerability and diversity. To examine these issues, we adopt the CLIMDEX indices of thermal extremes. We compute scores for each index on a geographic grid during a baseline period (1961–1990) and separately for the recent period (1991–2010). Heat extremes (temperatures above the 90th percentile during the baseline period) have become substantially more common during the recent period, particularly in the tropics. Importantly, the various indices show weak geographic concordance, implying that organisms in different regions will face different forms of thermal stress. The magnitude of recent shifts in indices is largely uncorrelated with baseline scores in those indices, suggesting that organisms are likely to face novel thermal stresses. Organismal tolerances correlate roughly with absolute metrics (mainly for cold), but poorly with metrics defined relative to local conditions. Regions with high extreme scores do not correlate closely with regions with high species diversity, human population density, or agricultural production. Even though frequency and intensity of extreme temperature events have – and are likely to have – major impacts on organisms, the impacts are likely to be geographically and taxonomically idiosyncratic and difficult to predict. 相似文献
3.
Peter H. Dutton Michael P. Jensen Amy Frey Erin LaCasella George H. Balazs Patricia Zárate Omar Chassin‐Noria Adriana Laura Sarti‐Martinez Elizabeth Velez 《Ecology and evolution》2014,4(22):4317-4331
Climate, behavior, ecology, and oceanography shape patterns of biodiversity in marine faunas in the absence of obvious geographic barriers. Marine turtles are an example of highly migratory creatures with deep evolutionary lineages and complex life histories that span both terrestrial and marine environments. Previous studies have focused on the deep isolation of evolutionary lineages (>3 mya) through vicariance; however, little attention has been given to the pathways of colonization of the eastern Pacific and the processes that have shaped diversity within the most recent evolutionary time. We sequenced 770 bp of the mtDNA control region to examine the stock structure and phylogeography of 545 green turtles from eight different rookeries in the central and eastern Pacific. We found significant differentiation between the geographically separated nesting populations and identified five distinct stocks (FST = 0.08–0.44, P < 0.005). Central and eastern Pacific Chelonia mydas form a monophyletic group containing 3 subclades, with Hawaii more closely related to the eastern Pacific than western Pacific populations. The split between sampled central/eastern and western Pacific haplotypes was estimated at around 0.34 mya, suggesting that the Pacific region west of Hawaii has been a more formidable barrier to gene flow in C. mydas than the East Pacific Barrier. Our results suggest that the eastern Pacific was colonized from the western Pacific via the Central North Pacific and that the Revillagigedos Islands provided a stepping‐stone for radiation of green turtles from the Hawaiian Archipelago to the eastern Pacific. Our results fit with a broader paradigm that has been described for marine biodiversity, where oceanic islands, such as Hawaii and Revillagigedo, rather than being peripheral evolutionary “graveyards”, serve as sources and recipients of diversity and provide a mechanism for further radiation. 相似文献
4.
Sadie J. Ryan Colin J. Carlson Blanka Tesla Matthew H. Bonds Calistus N. Ngonghala Erin A. Mordecai Leah R. Johnson Courtney C. Murdock 《Global Change Biology》2021,27(1):84-93
In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature‐dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid‐century (a generation into the future). Based on these model predictions, in the worst‐case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV. 相似文献
5.
KATHRYN J. PINTUS BRENDAN J. GODLEY ANDREW MCGOWAN ANNETTE C. BRODERICK 《The Journal of wildlife management》2009,73(7):1151-1157
ABSTRACT For species with temperature-dependent sex determination, such as marine turtles, global climate change poses numerous threats. At the nesting beach, rising temperatures are predicted to further skew already female-biased sex ratios and increase embryonic mortality; sea-level rise and resultant coastal squeeze may leave few alternative breeding habitats in developed regions. As a result, clutch relocation, a commonly used management tool to reduce egg loss, may become necessary for safeguarding populations. Although studies have examined the impact of relocation on clutch success, few have examined the impact of this practice on the sex or phenotypic characteristics of hatchlings produced. We used a randomized block design experiment to examine effects of relocation on green turtle (Chelonia mydas) clutches. We compared hatching success, thermal conditions, and size (length and mass) of hatchlings from in situ control clutches with those subjected to 2 relocation methods, while controlling for maternal and other environmental effects. Relocated clutches did not vary significantly from control clutches in incubation temperature or inferred sex ratios during the critical middle third of incubation when sex is thought to be determined. Hatchling size was also unaffected by relocation. Both relocation methods, however, resulted in a 20% reduction in hatching success in comparison to in situ clutches. Clutch relocation is, however, likely to affect the population primary sex ratio, when clutches are relocated from sites in proximity to the sea where tidal inundation is a threat. Here, cooler conditions are likely to produce more males than are the warmer female-producing temperatures higher up the beach. For clutches at risk, relocation is a viable process and does not appear to affect hatchling size or predicted sex ratios if relocation sites are selected in areas utilized by other females. We urge caution, however, when moving clutches from potentially male-producing sites, particularly given predicted impacts of climate change on already female-biased sex ratios. 相似文献
6.
Qamar A. Schuyler Chris Wilcox Kathy A. Townsend Kathryn R. Wedemeyer‐Strombel George Balazs Erik van Sebille Britta Denise Hardesty 《Global Change Biology》2016,22(2):567-576
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best‐fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life‐stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at‐risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. 相似文献
7.
《Global Change Biology》2017,23(11):4556-4568
Somatic growth is an integrated, individual‐based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio‐indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long‐lived, highly migratory, primarily herbivorous mega‐consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles—hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta—exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO)—the strongest on record—combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = −.94) and the Multivariate ENSO Index (MEI) for all years (r = .74). Granger‐causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region‐wide collaborations. 相似文献
8.
Mirek Trnka Jan Balek Andrew J. Challinor Howard J. Atkinson Peter E. Urwin 《Global Change Biology》2017,23(11):4497-4507
The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium‐ and high‐emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars. 相似文献
9.
The globally observed trend of changing intensity of tropical cyclones over the past few decades emphasizes the need for a better understanding of the effects of such disturbance events in natural and inhabited areas. On the Korean Peninsula, typhoon intensity has increased over the past 100 years as evidenced by instrumental data recorded from 1904 until present. We examined how the increase in three weather characteristics (maximum hourly and daily precipitation, and maximum wind speed) during the typhoon activity affected old‐growth oak forests. Quercus mongolica is a dominant species in the Korean mountains and the growth releases from 220 individuals from three sites along a latitudinal gradient (33–38°N) of decreasing typhoon activity were studied. Growth releases indicate tree‐stand disturbance and improved light conditions for surviving trees. The trends in release events corresponded to spatiotemporal gradients in maximum wind speed and precipitation. A high positive correlation was found between the maximum values of typhoon characteristics and the proportion of trees showing release. A higher proportion of disturbed trees was found in the middle and southern parts of the Korean peninsula where typhoons are most intense. This shows that the releases are associated with typhoons and also indicates the differential impact of typhoons on the forests. Finally, we present a record of the changing proportion of trees showing release based on tree‐rings for the period 1770–1979. The reconstruction revealed no trend during the period 1770–1879, while the rate of forest disturbances increased rapidly from 1880 to 1979. Our results suggest that if typhoon intensity rises, as is projected by some climatic models, the number of forest disturbance events will increase thus altering the disturbance regime and ecosystem processes. 相似文献
10.
Lisa R. Goshe Melissa L. Snover Aleta A. Hohn George H. Balazs 《Ecology and evolution》2016,6(10):3208-3215
Somatic growth rate data for wild sea turtles can provide insight into life‐stage durations, time to maturation, and total lifespan. When appropriately validated, the technique of skeletochronology allows prior growth rates of sea turtles to be calculated with considerably less time and labor than required by mark‐–recapture studies. We applied skeletochronology to 10 dead, stranded green turtles Chelonia mydas that had previously been measured, tagged, and injected with OTC (oxytetracycline) during mark–recapture studies in Hawaii for validating skeletochronological analysis. We tested the validity of back‐calculating carapace lengths (CLs) from diameters of LAGs (lines of arrested growth), which mark the outer boundaries of individual skeletal growth increments. This validation was achieved by comparing CLs estimated from measurements of the LAG proposed to have been deposited closest to the time of tagging to actual CLs measured at the time of tagging. Measureable OTC‐mark diameters in five turtles also allowed us to investigate the time of year when LAGs are deposited. We found no significant difference between CLs measured at tagging and those estimated through skeletochronology, which supports calculation of somatic growth rates by taking the difference between CLs estimated from successive LAG diameters in humerus bones for this species. Back‐calculated CLs associated with the OTC mark and growth mark deposited closest to tagging indicated that annual LAGs are deposited in the spring. The results of this validation study increase confidence in utilization of skeletochronology to rapidly obtain accurate age and growth data for green turtles. 相似文献
11.
Blair P. Bentley Brian J. Haas Jamie N. Tedeschi Oliver Berry 《Molecular ecology》2017,26(11):2978-2992
12.
Hannah B. Vander Zanden Karen A. Bjorndal Patrick W. Inglett Alan B. Bolten 《Biotropica》2012,44(3):294-301
Spatially separated ecosystems are often linked by nutrient fluxes. Nutrient inputs may be transferred by physical vectors (i.e., wind and water) or by biotic vectors. In this study, we examine the role of green turtles (Chelonia mydas) as biotic transporters of nutrients from marine to terrestrial ecosystems, where they deposit eggs. We compare low and high nest density sites at Tortuguero, Costa Rica, the largest green turtle rookery in the western hemisphere. Four plant species (Costus woodsonii, Hibiscus pernanbucensis, Hymenocallis littoralis, Ipomoea pes‐caprae) were analyzed at both nest density sites for 15N, total carbon, nitrogen, and phosphorus, and vegetation cover. Sand was analyzed for 15N and total nitrogen. Vegetation at high nest density sites had higher total nitrogen, which was correlated with higher δ15N values, suggesting nutrient input from a marine source. The dominant plant species changed between low and high nest density sites, indicating that turtle‐derived nutrients may alter the plant community composition. The trend in δ15N values of sand was similar, although less pronounced than that of the vegetation. Sand may be a poor integrator of nutrient input due to low nutrient adsorption and high rate of leaching. Sea turtles have previously been shown to deposit considerable amounts of nutrients and energy on nesting beaches. In this study, we estimate annual nitrogen and phosphorus contributions at Tortuguero are 507 and 45 kg/km, respectively, and we demonstrate that beach vegetation likely assimilates a portion of these marine‐derived nutrients. 相似文献
13.
Nathalie Isabelle Chardon Sonja Wipf Christian Rixen Annabarbara Beilstein Daniel Forest Doak 《Ecology and evolution》2018,8(16):7921-7935
Global change is modifying species communities from local to landscape scales, with alterations in the abiotic and biotic determinants of geographic range limits causing species range shifts along both latitudinal and elevational gradients. An important but often overlooked component of global change is the effect of anthropogenic disturbance, and how it interacts with the effects of climate to affect both species and communities, as well as interspecies interactions, such as facilitation and competition. We examined the effects of frequent human trampling disturbances on alpine plant communities in Switzerland, focusing on the elevational range of the widely distributed cushion plant Silene acaulis and the interactions of this facilitator species with other plants. Examining size distributions and densities, we found that disturbance appears to favor individual Silene growth at middle elevations. However, it has negative effects at the population level, as evidenced by a reduction in population density and reproductive indices. Disturbance synergistically interacts with the effects of elevation to reduce species richness at low and high elevations, an effect not mitigated by Silene. In fact, we find predominantly competitive interactions, both by Silene on its hosted and neighboring species and by neighboring (but not hosted) species on Silene. Our results indicate that disturbance can be beneficial for Silene individual performance, potentially through changes in its neighboring species community. However, possible reduced recruitment in disturbed areas could eventually lead to population declines. While other studies have shown that light to moderate disturbances can maintain high species diversity, our results emphasize that heavier disturbance reduces species richness, diversity, as well as percent cover, and adversely affects cushion plants and that these effects are not substantially reduced by plant–plant interactions. Heavily disturbed alpine systems could therefore be at greater risk for upward encroachment of lower elevation species in a warming world. 相似文献
14.
Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark–recapture study involving 830 N. apoda individuals during a one‐in‐seventy‐year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long‐held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change. 相似文献
15.
Rachael Treharne Jarle W. Bjerke Hans Tmmervik Laura Stendardi Gareth K. Phoenix 《Global Change Biology》2019,25(2):489-503
Extreme climatic events are among the drivers of recent declines in plant biomass and productivity observed across Arctic ecosystems, known as “Arctic browning.” These events can cause landscape‐scale vegetation damage and so are likely to have major impacts on ecosystem CO2 balance. However, there is little understanding of the impacts on CO2 fluxes, especially across the growing season. Furthermore, while widespread shoot mortality is commonly observed with browning events, recent observations show that shoot stress responses are also common, and manifest as high levels of persistent anthocyanin pigmentation. Whether or how this response impacts ecosystem CO2 fluxes is not known. To address these research needs, a growing season assessment of browning impacts following frost drought and extreme winter warming (both extreme climatic events) on the key ecosystem CO2 fluxes Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), ecosystem respiration (Reco) and soil respiration (Rsoil) was carried out in widespread sub‐Arctic dwarf shrub heathland, incorporating both mortality and stress responses. Browning (mortality and stress responses combined) caused considerable site‐level reductions in GPP and NEE (of up to 44%), with greatest impacts occurring at early and late season. Furthermore, impacts on CO2 fluxes associated with stress often equalled or exceeded those resulting from vegetation mortality. This demonstrates that extreme events can have major impacts on ecosystem CO2 balance, considerably reducing the carbon sink capacity of the ecosystem, even where vegetation is not killed. Structural Equation Modelling and additional measurements, including decomposition rates and leaf respiration, provided further insight into mechanisms underlying impacts of mortality and stress on CO2 fluxes. The scale of reductions in ecosystem CO2 uptake highlights the need for a process‐based understanding of Arctic browning in order to predict how vegetation and CO2 balance will respond to continuing climate change. 相似文献
16.
Andrew J. MacDonald Sofie McComb Craig ONeill Kerry A. Padgett Ashley E. Larsen 《Global Change Biology》2020,26(10):5459-5474
Global environmental change is having profound effects on the ecology of infectious disease systems, which are widely anticipated to become more pronounced under future climate and land use change. Arthropod vectors of disease are particularly sensitive to changes in abiotic conditions such as temperature and moisture availability. Recent research has focused on shifting environmental suitability for, and geographic distribution of, vector species under projected climate change scenarios. However, shifts in seasonal activity patterns, or phenology, may also have dramatic consequences for human exposure risk, local vector abundance and pathogen transmission dynamics. Moreover, changes in land use are likely to alter human–vector contact rates in ways that models of changing climate suitability are unlikely to capture. Here we used climate and land use projections for California coupled with seasonal species distribution models to explore the response of the western blacklegged tick (Ixodes pacificus), the primary Lyme disease vector in western North America, to projected climate and land use change. Specifically, we investigated how environmental suitability for tick host‐seeking changes seasonally, how the magnitude and direction of changing seasonal suitability differs regionally across California, and how land use change shifts human tick‐encounter risk across the state. We found vector responses to changing climate and land use vary regionally within California under different future scenarios. Under a hotter, drier scenario and more extreme land use change, the duration and extent of seasonal host‐seeking activity increases in northern California, but declines in the south. In contrast, under a hotter, wetter scenario seasonal host‐seeking declines in northern California, but increases in the south. Notably, regardless of future scenario, projected increases in developed land adjacent to current human population centers substantially increase potential human–vector encounter risk across the state. These results highlight regional variability and potential nonlinearity in the response of disease vectors to environmental change. 相似文献
17.
A. Moya L. Huisman S. Forêt J.‐P. Gattuso D. C. Hayward E. E. Ball D. J. Miller 《Molecular ecology》2015,24(2):438-452
18.
Steve D. Albon R. Justin. Irvine Odd Halvorsen Rolf Langvatn Leif E. Loe Erik Ropstad Vebjørn Veiberg René van der Wal Eirin M. Bjørkvoll Elizabeth I. Duff Brage B. Hansen Aline M. Lee Torkild Tveraa Audun Stien 《Global Change Biology》2017,23(4):1374-1389
The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain‐on‐snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between‐year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long‐term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain‐on‐snow’ events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density‐dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic. 相似文献
19.
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming‐induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying. 相似文献
20.
Brian Buma Paul E. Hennon Constance A. Harrington Jamie R. Popkin John Krapek Melinda S. Lamb Lauren E. Oakes Sari Saunders Stefan Zeglen 《Global Change Biology》2017,23(7):2903-2914
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post‐Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high‐resolution range map of this climate‐sensitive species, Callitropsis nootkatensis (yellow‐cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1–9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management. 相似文献