首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Worldwide habitat loss, land-use changes, and climate change threaten biodiversity, and we urgently need models that predict the combined impacts of these threats on organisms. Current models, however, overlook microhabitat diversity within landscapes and so do not accurately inform conservation efforts, particularly for ectotherms. Here, we built and field-parameterized a model to examine the effects of habitat loss and climate change on activity and microhabitat selection by a diurnal desert lizard. Our model predicted that lizards in rock-free areas would reduce summer activity levels (e.g. foraging, basking) and that future warming will gradually decrease summer activity in rocky areas, as even large rocks become thermally stressful. Warmer winters will enable more activity but will require bushes and small rocks as shade retreats. Hence, microhabitats that may seem unimportant today will become important under climate change. Modelling frameworks should consider the microhabitat requirements of organisms to improve conservation outcomes.  相似文献   

2.
    
Changes in land surface albedo can alter ecosystem energy balance and potentially influence climate. We examined the albedo of six bioenergy cropping systems in southwest Michigan USA: monocultures of energy sorghum (Sorghum bicolor), switchgrass (Panicum virgatum L.), and giant miscanthus (Miscanthus × giganteus), and polycultures of native grasses, early successional vegetation, and restored prairie. Direct field measurements of surface albedo (αs) from May 2018 through December 2020 at half-hourly intervals in each system quantified the magnitudes and seasonal differences in albedo (∆α) and albedo-induced radiative forcing (RFα). We used a nearby forest as a historical native cover type to estimate reference albedo and RFα change upon original land use conversion, and a continuous no-till maize (Zea mays L.) system as a contemporary reference to estimate change upon conversion from annual row crops. Annually, αs differed significantly (p < 0.05) among crops in the order: early successional (0.288 ± 0.012SE) >> miscanthus (0.271 ± 0.009) ≈ energy sorghum (0.270 ± 0.010) ≥ switchgrass (0.265 ± 0.009) ≈ restored prairie (0.264 ± 0.012) > native grasses (0.259 ± 0.010) > maize (0.247 ± 0.010). Reference forest had the lowest annual αs (0.134 ± 0.003). Albedo differences among crops during the growing season were also statistically significant, with growing season αs in perennial crops and energy sorghum on average ~20% higher (0.206 ± 0.003) than in no-till maize (0.184 ± 0.002). Average non-growing season (NGS) αs (0.370 ± 0.020) was much higher than growing season αs (0.203 ± 0.003) but these NGS differences were not significant. Overall, the original conversion of reference forest and maize landscapes to perennials provided a cooling effect on the local climate (RFαMAIZE: −3.83 ± 1.00 W m−2; RFαFOREST: −16.75 ± 3.01 W m−2). Significant differences among cropping systems suggest an additional management intervention for maximizing the positive climate benefit of bioenergy crops, with cellulosic crops on average ~9.1% more reflective than no-till maize, which itself was about twice as reflective as the reference forest.  相似文献   

3.
    
Climate change is expected to lead to upslope shifts in tree species distributions, but the evidence is mixed partly due to land‐use effects and individualistic species responses to climate. We examined how individual tree species demography varies along elevational climatic gradients across four states in the northeastern United States to determine whether species elevational distributions and their potential upslope (or downslope) shifts were controlled by climate, land‐use legacies (past logging), or soils. We characterized tree demography, microclimate, land‐use legacies, and soils at 83 sites stratified by elevation (~500 to ~1200 m above sea level) across 12 mountains containing the transition from northern hardwood to spruce‐fir forests. We modeled elevational distributions of tree species saplings and adults using logistic regression to test whether sapling distributions suggest ongoing species range expansion upslope (or contraction downslope) relative to adults, and we used linear mixed models to determine the extent to which climate, land use, and soil variables explain these distributions. Tree demography varied with elevation by species, suggesting a potential upslope shift only for American beech, downslope shifts for red spruce (more so in cool regions) and sugar maple, and no change with elevation for balsam fir. While soils had relatively minor effects, climate was the dominant predictor for most species and more so for saplings than adults of red spruce, sugar maple, yellow birch, cordate birch, and striped maple. On the other hand, logging legacies were positively associated with American beech, sugar maple, and yellow birch, and negatively with red spruce and balsam fir – generally more so for adults than saplings. All species exhibited individualistic rather than synchronous demographic responses to climate and land use, and the return of red spruce to lower elevations where past logging originally benefited northern hardwood species indicates that land use may mask species range shifts caused by changing climate.  相似文献   

4.
    
The development of appropriate tools to quantify long‐term carbon (C) budgets following forest transitions, that is, shifts from deforestation to afforestation, and to identify their drivers are key issues for forging sustainable land‐based climate‐change mitigation strategies. Here, we develop a new modeling approach, CRAFT (CaRbon Accumulation in ForesTs) based on widely available input data to study the C dynamics in French forests at the regional scale from 1850 to 2015. The model is composed of two interconnected modules which integrate biomass stocks and flows (Module 1) with litter and soil organic C (Module 2) and build upon previously established coupled climate‐vegetation models. Our model allows to develop a comprehensive understanding of forest C dynamics by systematically depicting the integrated impact of environmental changes and land use. Model outputs were compared to empirical data of C stocks in forest biomass and soils, available for recent decades from inventories, and to a long‐term simulation using a bookkeeping model. The CRAFT model reliably simulates the C dynamics during France's forest transition and reproduces C‐fluxes and stocks reported in the forest and soil inventories, in contrast to a widely used bookkeeping model which strictly only depicts C‐fluxes due to wood extraction. Model results show that like in several other industrialized countries, a sharp increase in forest biomass and SOC stocks resulted from forest area expansion and, especially after 1960, from tree growth resulting in vegetation thickening (on average 7.8 Mt C/year over the whole period). The difference between the bookkeeping model, 0.3 Mt C/year in 1850 and 21 Mt C/year in 2015, can be attributed to environmental and land management changes. The CRAFT model opens new grounds for better quantifying long‐term forest C dynamics and investigating the relative effects of land use, land management, and environmental change.  相似文献   

5.
    
Land‐based solutions are indispensable features of most climate mitigation scenarios. Here we conduct a novel cross‐sectoral assessment of regional carbon mitigation potential by running an ecosystem model with an explicit representation of forest structure and climate impacts for Bavaria, Germany, as a case study. We drive the model with four high‐resolution climate projections (EURO‐CORDEX) for the representative concentration pathway RCP4.5 and present‐day land‐cover from three satellite‐derived datasets (CORINE, ESA‐CCI, MODIS) and identify total mitigation potential by not only accounting for carbon storage but also material and energy substitution effects. The model represents the current state in Bavaria adequately, with a simulated forest biomass 12.9 ± 0.4% lower than data from national forest inventories. Future land‐use changes according to two ambitious land‐use harmonization scenarios (SSP1xRCP2.6, SSP4xRCP3.4) achieve a mitigation of 206 and 247 Mt C (2015–2100 period) via reforestation and the cultivation and burning of dedicated bioenergy crops, partly combined with carbon capture and storage. Sensitivity simulations suggest that converting croplands or pastures to bioenergy plantations could deliver a carbon mitigation of 40.9 and 37.7 kg C/m2, respectively, by the year 2100 if used to replace carbon‐intensive energy systems and combined with CCS. However, under less optimistic assumptions (including no CCS), only 15.3 and 12.2 kg C/m2 are mitigated and reforestation might be the better option (20.0 and 16.8 kg C/m2). Mitigation potential in existing forests is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Our simulations provide guidelines to policy makers, farmers, foresters, and private forest owners for sustainable and climate‐benefitting ecosystem management in temperate regions. They also emphasize the importance of the CCS technology which is regarded critically by many people, making its implementation in the short or medium term currently doubtable.  相似文献   

6.
  总被引:9,自引:0,他引:9  
Aim This study makes quantitative global estimates of land suitability for cultivation based on climate and soil constraints. It evaluates further the sensitivity of croplands to any possible changes in climate and atmospheric CO2 concentrations. Location The location is global, geographically explicit. Methods The methods used are spatial data synthesis and analysis and numerical modelling. Results There is a cropland ‘reserve’ of 120%, mainly in tropical South America and Africa. Our climate sensitivity analysis indicates that the southern provinces of Canada, north‐western and north‐central states of the United States, northern Europe, southern Former Soviet Union and the Manchurian plains of China are most sensitive to changes in temperature. The Great Plains region of the United States and north‐eastern China are most sensitive to changes in precipitation. The regions that are sensitive to precipitation change are also sensitive to changes in CO2, but the magnitude is small compared to the influence of direct climate change. We estimate that climate change, as simulated by global climate models, will expand cropland suitability by an additional 16%, mainly in the Northern Hemisphere high latitudes. However, the tropics (mainly Africa, northern South America, Mexico and Central America and Oceania) will experience a small decrease in suitability due to climate change. Main conclusions There is a large reserve of cultivable croplands, mainly in tropical South America and Africa. However, much of this land is under valuable forests or in protected areas. Furthermore, the tropical soils could potentially lose fertility very rapidly once the forest cover is removed. Regions that lie at the margins of temperature or precipitation limitation to cultivation are most sensitive to changes in climate and atmospheric CO2 concentration. It is anticipated that climate change will result in an increase in cropland suitability in the Northern Hemisphere high latitudes (mainly in developed nations), while the tropics will lose suitability (mainly in developing nations).  相似文献   

7.
    
《Ecohydrology》2017,10(7)
Human population growth and urban development are affecting climate, land use, and the ecosystem services provided to society, including the supply of freshwater. We investigated the effects of land use and climate change on water resources in the Yadkin–Pee Dee River Basin of North Carolina, United States. Current and projected land uses were modeled at high resolution for three watersheds representing a forested to urban land use gradient by melding the National Land Cover Dataset with data from the U.S. Forest Service Forest Inventory and Analysis. Forecasts for 2051–2060 of regional land use and climate for scenarios of low (B2) and moderately high (A1B) rates of change, coupled with multiple global circulation models (MIROC, CSIRO, and Hadley), were used to inform a distributed ecohydrological model. Our results identified increases in water yields across the study watersheds, primarily due to forecasts of increased precipitation. Climate change was a more dominant factor for future water yield relative to land use change across all land uses (forested, urban, and mixed). When land use change was high (27% of forested land use was converted to urban development), it amplified the impacts of climate change on both the magnitude and timing of water yield. Our fine‐scale (30‐m) distributed combined modeling approach of land use and climate change identified changes in watershed hydrology at scales relevant for management, emphasizing the need for modeling efforts that integrate the effects of biophysical (climate) and social economic (land use) changes on the projection of future water resource scenarios.  相似文献   

8.
9.
    
The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this study, we assess the consequences of land‐use change on cropland. We first identify areas where cropland is so productive that it may never be converted and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced woody energy crops or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land‐use change – we simply assess the best option in any given global location should a land‐use change occur. To do this, we use global biomass potential studies based on food crop productivity, forest inventory data and dynamic global vegetation models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 ad . Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe‐25, 48.4% in North America, 13.7% in South America and 58.5% in Oceania. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars provide the best climate mitigation option on ≈485 Mha of cropland worldwide with ~42% of this land characterized by a terrain slope equal or above 20%. If that land‐use change did occur, it would displace ≈58.1 Pg fossil fuel C equivalent (Ceq oil). Woody energy crops such as poplar, willow and Eucalyptus species would be the best option on only 2.4% (≈26.3 Mha) of current cropland, and if this land‐use change occurred, it would displace ≈0.9 Pg Ceq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈17% of current cropland (≈184.5 Mha), and if this land‐use change occurred, it would sequester ≈5.8 Pg C in biomass in the 20‐year‐old forest and ≈2.7 Pg C in soil. This study is spatially explicit, so also serves to identify the regional differences in the efficacy of different climate mitigation options, informing policymakers developing regionally or nationally appropriate mitigation actions.  相似文献   

10.
11.
12.
    
Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high‐intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm‐ and cold‐associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold‐associated species, whilst for butterflies, warm‐associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in response to climate change. Specifically, high‐intensity land use appears to exacerbate declines in cold‐adapted bird and butterfly species, and prevent increases in warm‐associated birds. This has broad implications for managing landscapes to promote climate change adaptation.  相似文献   

13.
Brazil is one of the major contributors to land‐use change emissions, mostly driven by agricultural expansion for food, feed, and bioenergy feedstock. Policies to avoid deforestation related to private commitments, economic incentives, and other support schemes are expected to improve the effectiveness of current command and control mechanisms increasingly. However, until recently, land tenure was unknown for much of the Brazilian territory, which has undermined the governance of native vegetation and challenged support and incentive mechanisms for avoiding deforestation. We assess the total extent of public governance mechanisms protecting aboveground carbon (AGC) stocks. We constructed a land tenure dataset for the entire nation and modeled the effects and uncertainties of major land‐use acts on protecting AGC stocks. Roughly 70% of the AGC stock in Brazil is estimated to be under legal protection, and an additional 20% is expected to be protected after areas in the Amazon with currently undesignated land undergo a tenure regularization. About 30% of the AGC stock is on private land, of which roughly two‐thirds are protected. The Cerrado, Amazon, and Caatinga biomes hold about 40%, 30%, and 20% of the unprotected AGC, respectively. Effective conservation of protected and unprotected carbon will depend on successful implementation of the Forest Act, and regularization of land tenure in the Amazon. Policy development that prioritizes unprotected AGC stocks is warranted to promote conservation of native vegetation beyond the legal requirements. However, different biomes and land tenure structures may require different policy settings considering local and regional specifics. Finally, the fate of current AGC stocks relies upon effective implementation of command and control mechanisms, considering that unprotected AGC in native vegetation on private land only accounts for 6.5% of the total AGC stock.  相似文献   

14.
    
Forest restoration is expected to play a pivotal role in reducing extinctions driven by deforestation and climate change over the next century. However, spatial and temporal patterns of restoration (both passive and active) are likely to be highly variable depending on degree of land use change as well as levels of forest and soil degradation and residual vegetation. Uncertainties regarding the spatial and temporal reinstatement of forest on degraded land make it difficult to determine where future investment in active restoration should be targeted. We used satellite data to quantify change in the extent and foliage projection cover (FPC) of woody vegetation returning to land previously cleared of subtropical rainforest in eastern Australia. We show a modest recovery of woody vegetation but document high variability in this trend between local areas, expanding by over 5% in some situations but declining by up to 2% in others over the last decade (1999–2009 period). This was accompanied by minor change in average FPC (?0.2 to 4.2%). Overall, decadal expansion in woody vegetation was most apparent in local areas with intermediate levels of existing forest reestablishment and was most likely to occur on steep terrain near existing vegetation. These results provide a valuable first evaluation of where restoration is occurring and the likely time frame required to meet conservation objectives under a business as usual scenario. This knowledge enables returns from current investment to be quantified and can be used to better allocate funds for restoration in the future.  相似文献   

15.
    
We studied the effects of climate change and forest management scenarios on net climate impacts (radiative forcing) of production and utilization of energy biomass, in a Norway spruce forest area over an 80‐year simulation period in Finnish boreal conditions. A stable age‐class distribution was used in model‐based analyses to identify purely the management effects under the current and changing climate (SRES B1 and A2 scenarios). The radiative forcing was calculated based on an integrated use of forest ecosystem model simulations and a life cycle assessment (LCA) tool. In this work, forest‐based energy was used to substitute coal, and current forest management (baseline management) was used as a reference management. In alternative management scenarios, the stocking was maintained 20% higher in thinning compared to the baseline management, and nitrogen fertilization was applied. Intensity of energy biomass harvest (e.g. logging residues, coarse roots and stumps) was varied in the final felling of the stands at the age of 80 years. Also, the economic profitability (NPV, 3% interest rate) of integrated production of timber and energy biomass was calculated for each management scenario. Our results showed that compared to the baseline management, climate benefits could be increased by maintaining higher stocking in thinning over rotation, using nitrogen fertilization and harvesting logging residues, stumps and coarse roots in the final felling. Under the gradually changing climate (in both SRES B1 and A2), the climate benefits were lower compared to the current climate. Trade‐offs between NPV and net climate impacts also existed.  相似文献   

16.
    
Natural and anthropogenic processes are causing extensive and rapid ecological, social, and economic changes in arid and semiarid ecosystems worldwide. Nowhere are these changes more evident than in the Great Basin of the western United States, a region of 400,000 km2 that largely is managed by federal agencies. Major drivers of ecosystems and human demographics of the Great Basin include human population growth, grazing by domestic livestock, extraction of minerals, development and production of energy, changes in fire and other disturbance regimes, and invasion of non-native annual plants. Exploration of alternative futures may increase the ability of management and policy to maximize the system's resistance and resilience to changes in climate, disturbance regimes, and anthropogenic perturbations. This special section examines the issues facing the Great Basin and then provides examples of approaches to predicting changes in land cover and avifaunal distributions under different management scenarios. Future sustainability of the Great Basin's natural and human systems requires strong, collaborative partnerships among research and management organizations that are capable of obtaining public support and financial resources and developing effective policies and institutional mechanisms.  相似文献   

17.
    
Climate change and land‐use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental‐scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio‐economic development scenarios. We find that across all scenarios 5–6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land‐use change even under an optimistic climate scenario, if land‐use expansion is halted by the mid‐century. We suggest that constraining land‐use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate‐change impacts during the second half of this century. Our results may guide the evaluation of socio‐economic scenarios in terms of their potential for biome conservation under global change.  相似文献   

18.
    
Bottom–up estimates from long‐term field experiments and modelling are the most commonly used approaches to estimate the carbon (C) sequestration potential of the agricultural sector. However, when data are required at European level, important margins of uncertainty still exist due to the representativeness of local data at large scale or different assumptions and information utilized for running models. In this context, a pan‐European (EU + Serbia, Bosnia and Herzegovina, Montenegro, Albania, Former Yugoslav Republic of Macedonia and Norway) simulation platform with high spatial resolution and harmonized data sets was developed to provide consistent scenarios in support of possible carbon sequestration policies. Using the CENTURY agroecosystem model, six alternative management practices (AMP) scenarios were assessed as alternatives to the business as usual situation (BAU). These consisted of the conversion of arable land to grassland (and vice versa), straw incorporation, reduced tillage, straw incorporation combined with reduced tillage, ley cropping system and cover crops. The conversion into grassland showed the highest soil organic carbon (SOC) sequestration rates, ranging between 0.4 and 0.8 t C ha?1 yr?1, while the opposite extreme scenario (100% of grassland conversion into arable) gave cumulated losses of up to 2 Gt of C by 2100. Among the other practices, ley cropping systems and cover crops gave better performances than straw incorporation and reduced tillage. The allocation of 12 to 28% of the European arable land to different AMP combinations resulted in a potential SOC sequestration of 101–336 Mt CO2 eq. by 2020 and 549‐2141 Mt CO2 eq. by 2100. Modelled carbon sequestration rates compared with values from an ad hoc meta‐analysis confirmed the robustness of these estimates.  相似文献   

19.
    
Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.  相似文献   

20.

Aim

Primary forests have high conservation value but are rare in Europe due to historic land use. Yet many primary forest patches remain unmapped, and it is unclear to what extent they are effectively protected. Our aim was to (1) compile the most comprehensive European‐scale map of currently known primary forests, (2) analyse the spatial determinants characterizing their location and (3) locate areas where so far unmapped primary forests likely occur.

Location

Europe.

Methods

We aggregated data from a literature review, online questionnaires and 32 datasets of primary forests. We used boosted regression trees to explore which biophysical, socio‐economic and forest‐related variables explain the current distribution of primary forests. Finally, we predicted and mapped the relative likelihood of primary forest occurrence at a 1‐km resolution across Europe.

Results

Data on primary forests were frequently incomplete or inconsistent among countries. Known primary forests covered 1.4 Mha in 32 countries (0.7% of Europe’s forest area). Most of these forests were protected (89%), but only 46% of them strictly. Primary forests mostly occurred in mountain and boreal areas and were unevenly distributed across countries, biogeographical regions and forest types. Unmapped primary forests likely occur in the least accessible and populated areas, where forests cover a greater share of land, but wood demand historically has been low.

Main conclusions

Despite their outstanding conservation value, primary forests are rare and their current distribution is the result of centuries of land use and forest management. The conservation outlook for primary forests is uncertain as many are not strictly protected and most are small and fragmented, making them prone to extinction debt and human disturbance. Predicting where unmapped primary forests likely occur could guide conservation efforts, especially in Eastern Europe where large areas of primary forest still exist but are being lost at an alarming pace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号