首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under future climate drought‐induced tree mortality may result in the contraction of species ranges and the reorganization of community composition where abundant and peripheral species exchange their patterns of dominance. Predicting these changes will be challenging because the future suitable habitat may be a mismatch for the current bioclimatic envelope because of discrepancies between the realized and fundamental niche. Here we evaluate the extent of the discrepancy, as applied to tree species in relation to their relative field‐recorded drought sensitivities and their observed range‐wide environmental moisture envelopes. The hypothesis tested was that different species levels of drought‐induced damage at sites where they co‐occur will be positively associated with the minimum moisture availability in the most drought‐prone part of each species current geographic range. We tested the hypothesis using drought damage measurements for 13 Australian Myrtaceae (including Eucalyptus) tree species at a site where all co‐occur, together with 120 years of climate data across their geographical ranges. With limited statistical power the results generated only modest support for the hypothesis suggesting limited capacity to predict future distributions under climate change scenarios. In spite of the poor dispersal capacities of Eucalyptus and allied genera, but consistent with knowledge of breeding systems and genetic variability within Eucalyptus, the findings also suggest that many species have a capacity for rapid adaptive response to climate change, including the vicissitudes of the late Quaternary.  相似文献   

2.
Despite widespread interest in drought legacies—multiyear impacts of drought on tree growth—the key implication of reported drought legacies remains unaddressed: as impaired growth and slow recovery associated with drought legacies are pervasive across forest ecosystems, what is the impact of more frequent drought conditions? We investigated the assumption that either multiple drought years occurring during a short period (multiyear droughts), or droughts occurring during the recovery period from previous drought (compounded droughts), are detrimental to subsequent growth. There is evidence that drought responses may vary among populations of widespread species, leading us to examine regional differences in responses of the conifer Pinus ponderosa to historic drought frequency in the western United States. More frequent drought conditions incurred additional growth declines and shifts in growth–climate sensitivities in the years following drought relative to single‐drought events, with ‘triple‐droughts' being worse than ‘double‐droughts'. Notably, prediction skill was not strongly reduced when ignoring compounded droughts, a consequence of the temporally comprehensive formulation of our stochastic antecedent model that accounts for the climatic memory of tree growth. We argue that incorporating drought‐induced temporal variability in tree growth sensitivities can aid inference gained from statistical models, where more simplistic models could overestimate the severity of drought legacies. We also found regional differences in response to repeated drought, and suggest plastic post‐drought sensitivities and climatic memory may represent beneficial physiological adjustments in interior regions. Within‐species variability may thus mediate forest responses to increasing drought frequency under future climate change, but experimental approaches using more species are necessary to improve our understanding of the mechanisms that underlie drought legacy effects on tree growth.  相似文献   

3.
Some forest‐related studies on possible effects of climate change conclude that growth potential of European beech (Fagus sylvatica L.) might be impaired by the predicted increase in future serious drought events during the growing season. Other recent research suggests that not only multiyear increment rates but also growth resistance and recovery of beech during, respectively, after dry years may differ between pure and mixed stands. Thus, we combined dendrochronological investigations and wood stable isotope measurements to further investigate the impact of neighborhood diversity on long‐term performance, short‐term drought response and soil water availability of European beech in three major geographic regions of Germany. During the last four decades, target trees whose competitive neighborhood consisted of co‐occurring species exhibited a superior growth performance compared to beeches in pure stands of the same investigation area. This general pattern was also found in exceptional dry years. Although the summer droughts of 1976 and 2003 predominantly caused stronger relative growth declines if target trees were exposed to interspecific competition, with few exceptions they still formed wider annual rings than beeches growing in close‐by monocultures. Within the same study region, recovery of standardized beech target tree radial growth was consistently slower in monospecific stands than in the neighborhood of other competitor species. These findings suggest an improved water availability of beech in mixtures what is in line with the results of the stable isotope analysis. Apparently, the magnitude of competitive complementarity determines the growth response of target beech trees in mixtures. Our investigation strongly suggest that the sensitivity of European beech to environmental constrains depends on neighborhood identity. Therefore, the systematic formation of mixed stands tends to be an appropriate silvicultural measure to mitigate the effects of global warming and droughts on growth patterns of Fagus sylvatica.  相似文献   

4.
From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species‐specific responses to extreme drought and mortality of four co‐occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole‐tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground.  相似文献   

5.
Current climate models predict a shift to warmer, drier conditions in the southwestern US. While major shifts in plant distribution are expected to follow these climate changes, interactions among species and intraspecific genetic variation rarely have been incorporated into models of future plant distributions. We examined the drought‐related mortality of pinyon pine (Pinus edulis) in northern Arizona focusing on trees that showed genetically‐based resistance or susceptibility to a nonlethal herbivore, the shoot‐boring moth, Dioryctria albovittella. Because moth resistant trees have outperformed susceptible trees during 20 years of study, and herbivory has been shown to increase drought related mortality, we expected higher mortality rates in susceptible trees. However, our field observations and greenhouse experiments showed several unexpected patterns relevant to understanding the consequences of climate change: (1) The mortality of adult P. edulis resistant to the moth was three times higher than the mortality of trees susceptible to the moth. (2) Over a few years, differential mortality caused a shift in stand structure from resistant dominated to equality (3 : 1 resistant : susceptible to 1 : 1). (3) Adult moth resistant trees suffered significantly greater water stress than adult moth susceptible trees, suggesting that variation among the two groups in drought tolerance may be a mechanism for differential mortality. (4) When grown under drought conditions in the greenhouse, seedlings from resistant mothers died sooner than seedlings from susceptible mothers. These data support the hypothesis that drought can act as an agent of balancing selection and that drought resistance is a heritable trait. Taken together, our findings suggest that genetic variation in a population can be an important factor in determining its response to future climate change, and argue for the inclusion of genetics into models developed to understand the consequences of climate change.  相似文献   

6.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   

7.
Improving our understanding of the potential of forest adaptation is an urgent task in the light of predicted climate change. Long‐term alternatives for susceptible yet economically important tree species such as Norway spruce (Picea abies) are required, if the frequency and intensity of summer droughts will continue to increase. Although Silver fir (Abies alba) and Douglas fir (Pseudotsuga menziesii) have both been described as drought‐tolerant species, our understanding of their growth responses to drought extremes is still limited. Here, we use a dendroecological approach to assess the resistance, resilience, and recovery of these important central Europe to conifer species the exceptional droughts in 1976 and 2003. A total of 270 trees per species were sampled in 18 managed mixed‐species stands along an altitudinal gradient (400–1200 m a.s.l.) at the western slopes of the southern and central Black Forest in southwest Germany. While radial growth in all species responded similarly to the 1976 drought, Norway spruce was least resistant and resilient to the 2003 summer drought. Silver fir showed the overall highest resistance to drought, similarly to Douglas fir, which exhibited the widest growth rings. Silver fir trees from lower elevations were more drought prone than trees at higher elevations. Douglas fir and Norway spruce, however, revealed lower drought resilience at higher altitudes. Although the 1976 and 2003 drought extremes were quite different, Douglas fir maintained consistently the highest radial growth. Although our study did not examine population‐level responses, it clearly indicates that Silver fir and Douglas fir are generally more resistant and resilient to previous drought extremes and are therefore suitable alternatives to Norway spruce; Silver fir more so at higher altitudes. Cultivating these species instead of Norway spruce will contribute to maintaining a high level of productivity across many Central European mountain forests under future climate change.  相似文献   

8.
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.  相似文献   

9.
Accounting for water stress‐induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species‐specific relationships between probability of mortality (Pm) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (Ws,z) and reference evapotranspiration (ETr,z) at each field plot. The models additionally tested for interactions between the water‐balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross‐validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water‐balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole‐plant, leaf‐specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr?1 in 1951 to 2.0% yr?1 in 2014 (a net change of 0.9 ± 0.3% yr?1). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak‐to‐moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This ‘learn‐as‐we‐go’ approach – defined by sampling rare drought events as they continue to intensify – will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change.  相似文献   

10.
Trees are exceptional organisms that have evolved over some 385 million years and have overtaken other plants in order to harvest light first. However, this advantage comes with a cost: trees must transport water all the way up to their crowns and inherent physical limitations make them vulnerable to water deficits. Because climate change scenarios predict more frequent extreme drought events, trees will increasingly need to cope with water stress. Recent occurrences of climate change‐type droughts have had severe impacts on several forest ecosystems. Initial experimental studies have been undertaken and show that stomatal control of water loss hinders carbon assimilation and could lead to starvation during droughts. Other mechanisms of drought‐induced mortality are catastrophic xylem dysfunction, impeded long‐distance transport of carbohydrates (translocation) and also symplastic failure (cellular breakdown). However, direct empirical support is absent for either hypothesis. More experimental studies are necessary to increase our understanding of these processes and to resolve the mystery of drought‐related tree mortality. Instead of testing the validity of particular hypothesis as mechanisms of drought‐induced tree mortality, future research should aim at revealing the temporal dynamics of these mechanisms in different species and over a gradient of environmental conditions. Only such studies will reveal whether the struggle for light will become a struggle for water and/or for carbon in drought‐affected areas.  相似文献   

11.
The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (−0.56 by decade) and resilience (−0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.  相似文献   

12.
Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest–savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest–savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource‐capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root‐to‐shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. Synthesis: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open‐canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest–savanna transitions.  相似文献   

13.
Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These “drought legacy effects” have been widely documented in tree‐ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree‐ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree‐ring records, leaf‐level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree‐ring width increments in the year following the severe drought. Despite this stand‐scale reduction in radial growth, we found that leaf‐level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf‐level photosynthesis co‐occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree‐ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree‐ring signals from GPP.  相似文献   

14.
Vulnerability to climate change, and particularly to climate extreme events, is expected to vary across species ranges. Thus, we need tools to standardize the variability in regional climatic legacy and extreme climate across populations and species. Extreme climate events (e.g., droughts) can erode populations close to the limits of species' climatic tolerance. Populations in climatic‐core locations may also become vulnerable because they have developed a greater demand for resources (i.e., water) that cannot be enough satisfied during the periods of scarcity. These mechanisms can become exacerbated in tree populations when combined with antagonistic biotic interactions, such as insect infestation. We used climatic suitability indices derived from Species Distribution Models (SDMs) to standardize the climatic conditions experienced across Pinus edulis populations in southwestern North America, during a historical period (1972–2000) and during an extreme event (2001–2007), when the compound effect of hot drought and bark beetle infestation caused widespread die‐off and mortality. Pinus edulis climatic suitability diminished dramatically during the die‐off period, with remarkable variation between years. P. edulis die‐off occurred mainly not just in sites that experienced lower climatic suitability during the drought but also where climatic suitability was higher during the historical period. The combined effect of historically high climatic suitability and a marked decrease in the climatic suitability during the drought best explained the range‐wide mortality. Lagged effects of climatic suitability loss in previous years and co‐occurrence of Juniperus monosperma also explained P. edulis die‐off in particular years. Overall, the study shows that past climatic legacy, likely determining acclimation, together with competitive interactions plays a major role in responses to extreme drought. It also provides a new approach to standardize the magnitude of climatic variability across populations using SDMs, improving our capacity to predict population's or species' vulnerability to climatic change.  相似文献   

15.
Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon‐cycle feedbacks. Recent drought‐induced, widespread forest die‐offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die‐off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die‐off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate–vegetation models. Finally, our findings highlight the critical role of drought stress accumulation and repair of stress‐induced damage for avoiding plant mortality, presenting a dynamic and contingent framework for drought impacts on forest ecosystems.  相似文献   

16.
Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance‐related functional traits of a widespread gymnosperm (ponderosa pine – Pinus ponderosa) and angiosperm (trembling aspen – Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree‐to‐tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area‐to‐sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought‐related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms – a result that has important implications for process‐based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of trait variation across ranges, something rarely done in a range‐limit context, helps elucidate a mechanistic understanding of range constraints.  相似文献   

17.
Forests respond to increasing intensities and frequencies of drought by reducing growth and with higher tree mortality rates. Little is known, however, about the long‐term consequences of generally drier conditions and more frequent extreme droughts. A Holm oak forest was exposed to experimental rainfall manipulation for 13 years to study the effect of increasing drought on growth and mortality of the dominant species Quercus ilex, Phillyrea latifolia, and Arbutus unedo. The drought treatment reduced stem growth of A. unedo (?66.5%) and Q. ilex (?17.5%), whereas P. latifolia remained unaffected. Higher stem mortality rates were noticeable in Q. ilex (+42.3%), but not in the other two species. Stem growth was a function of the drought index of early spring in the three species. Stem mortality rates depended on the drought index of winter and spring for Q. ilex and in spring and summer for P. latifolia, but showed no relation to climate in A. unedo. Following a long and intense drought (2005–2006), stem growth of Q. ilex and P. latifolia increased, whereas it decreased in A. unedo. Q. ilex also enhanced its survival after this period. Furthermore, the effect of drought treatment on stem growth in Q. ilex and A. unedo was attenuated as the study progressed. These results highlight the different vulnerabilities of Mediterranean species to more frequent and intense droughts, which may lead to partial species substitution and changes in forest structure and thus in carbon uptake. The response to drought, however, changed over time. Decreased intra‐ and interspecific competition after extreme events with high mortality, together with probable morphological and physiological acclimation to drought during the study period, may, at least in the short term, buffer forests against drier conditions. The long‐term effects of drought consequently deserve more attention, because the ecosystemic responses are unlikely to be stable over time.Nontechnical summaryIn this study, we evaluate the effect of long‐term (13 years) experimental drought on growth and mortality rates of three forest Mediterranean species, and their response to the different intensities and durations of natural drought. We provide evidence for species‐specific responses to drought, what may eventually lead to a partial community shift favoring the more drought‐resistant species. However, we also report a dampening of the treatment effect on the two drought‐sensitive species, which may indicate a potential adaptation to drier conditions at the ecosystem or population level. These results are thus relevant to account for the stabilizing processes that would alter the initial response of ecosystem to drought through changes in plant physiology, morphology, and demography compensation.  相似文献   

18.
19.
We examine demographic patterns from a long-term study (1987–1996) of the population of ring-tailed lemurs in the Beza-Mahafaly Special Reserve, in southwestern Madagascar. In particular, we focus on the effects that a severe drought in 1991 and 1992 had on the population. The population of adult animals peaked in 1991 but decreased rapidly during the subsequent drought and immediate postdrought years. In the 1992 birth season (and second year of the drought) infant mortality reached 80%, and 20.8% of all adult females in the reserve died. The following year, adult female mortality reached a high of 29.9%. Juvenile mortality in 3 intensively studied groups was 57% during the second year of the drought. We compare these data with infant, juvenile, and adult female mortality in non-drought years. We are not able to calculate adult male mortality, as they often emigrate from the reserve to the adjacent forest; however, in the same 3 intensively studied groups, 89% of the males disappeared during the 2 immediate postdrought years. By 1996, the population had begun to recover after the decline that correlated with the drought conditions. Annual reproduction, high birth rates (.80–.86 annually), early sexual maturity, and dietary adaptability may be contributing factors to the recovery. Effects of and recovery from this type of natural disaster in the Beza Mahafaly ring-tailed lemur population parallel responses of some species of macaques and baboons with respect to the adaptability of edge species.  相似文献   

20.
  • 1 We evaluate the position of 50 previously published studies of fish and drought with respect to spatial scale of study (individual stream pools to subcontinents), length of the dry period (weeks to centuries), and level of system complexity (individual fish to ecosystems). Most papers address short (months to a year) droughts or dry periods, in local reaches of streams, and impacts on populations or local assemblages. In these 50 papers, the most frequently demonstrated effects of drought were population declines, loss of habitat, changes in the community, negative effects from changes in water quality, movement within catchments, and crowding of fish in reduced microhabitats. Thirteen other less frequent effects also were identified.
  • 2 Gaps in knowledge exist on effects of long‐term droughts (decades to centuries), influence of drought on fish effects in ecosystems, and at the spatial scale of river basins to subcontinents. However, some of these gaps have recently been addressed, particularly additive effects of repeated drying episodes and whole‐lake or basin‐wide effects of drought, and in using molecular techniques to seek signals of drought at wide geographic scales because of events in the deep past. Gaps in knowledge remain for effects of very short dry periods, on drought effects on higher levels of complexity, and on the manner in which droughts at the scale of decades affect fish.
  • 3 Data from streams in Oklahoma and elsewhere in the south‐western U.S.A. suggest that most droughts may leave little persistent signal in the existing fish fauna, i.e. that recovery from drought by fish populations or assemblages in the region can be rapid. However, species that are vulnerable to drought or water loss in streams may have disappeared from some basins in the region before the mid‐1900s, and recent evidence also suggests that extreme droughts do sometimes alter fish assemblages.
  • 4 Little is known about mechanisms by which droughts have direct or indirect effects on fish, the roles of droughts in the evolution of fish species, and the ways droughts alter effects of fish in ecosystems. Global climate changes may have serious consequences for future local or regional fish faunas, but ongoing studies of fish experiencing drought may aid in future conservation of what will become species at risk under climate‐change scenarios.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号