首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate warming will affect terrestrial ecosystems in many ways, and warming‐induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta‐analyses of C flux responses have lacked sufficient sample size to discern relative responses for a given biome type. For instance grasslands contribute greatly to global terrestrial C fluxes, and to date grassland warming experiments provide the opportunity to evaluate concurrent responses of both plant and soil C fluxes. Here, we compiled data from 70 sites (in total 622 observations) to evaluate the response of C fluxes to experimental warming across three grassland types (cold, temperate, and semi‐arid), warming methods, and short (≤3 years) and longer‐term (>3 years) experiment lengths. Overall, our meta‐analysis revealed that experimental warming stimulated C fluxes in grassland ecosystems with regard to both plant production (e.g., net primary productivity (NPP) 15.4%; aboveground NPP (ANPP) by 7.6%, belowground NPP (BNPP) by 11.6%) and soil respiration (Rs) (9.5%). However, the magnitude of C flux stimulation varied significantly across cold, temperate and semi‐arid grasslands, in that responses for most C fluxes were larger in cold than temperate or semi‐arid ecosystems. In semi‐arid and temperate grasslands, ecosystem respiration (Reco) was more sensitive to warming than gross primary productivity (GPP), while the opposite was observed for cold grasslands, where warming produced a net increase in whole‐ecosystem C storage. However, the stimulatory effect of warming on ANPP and Rs observed in short‐term studies (≤3 years) in both cold and temperate grasslands disappeared in longer‐term experiments (>3 years). These results highlight the importance of conducting long‐term warming experiments, and in examining responses across a wide range of climate.  相似文献   

2.
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long‐lived, wide‐ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black‐legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea‐surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large‐scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom‐up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large‐scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.  相似文献   

3.
The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming‐induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground‐level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short‐ and long‐term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming‐driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high‐latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming‐induced extension of LOS has important implications for the C‐sink potential of subarctic grasslands under climate change.  相似文献   

4.
The sustainability of the vast Arctic permafrost carbon pool under climate change is of paramount importance for global climate trajectories. Accurate climate change forecasts, therefore, depend on a reliable representation of mechanisms governing Arctic carbon cycle processes, but this task is complicated by the complex interaction of multiple controls on Arctic ecosystem changes, linked through both positive and negative feedbacks. As a primary example, predicted Arctic warming can be substantially influenced by shifts in hydrologic regimes, linked to, for example, altered precipitation patterns or changes in topography following permafrost degradation. This study presents observational evidence how severe drainage, a scenario that may affect large Arctic areas with ice‐rich permafrost soils under future climate change, affects biogeochemical and biogeophysical processes within an Arctic floodplain. Our in situ data demonstrate reduced carbon losses and transfer of sensible heat to the atmosphere, and effects linked to drainage‐induced long‐term shifts in vegetation communities and soil thermal regimes largely counterbalanced the immediate drainage impact. Moreover, higher surface albedo in combination with low thermal conductivity cooled the permafrost soils. Accordingly, long‐term drainage effects linked to warming‐induced permafrost degradation hold the potential to alleviate positive feedbacks between permafrost carbon and Arctic warming, and to slow down permafrost degradation. Self‐stabilizing effects associated with ecosystem disturbance such as these drainage impacts are a key factor for predicting future feedbacks between Arctic permafrost and climate change, and, thus, neglect of these mechanisms will exaggerate the impacts of Arctic change on future global climate projections.  相似文献   

5.
Past abrupt ‘regime shifts’ have been observed in a range of ecosystems due to various forcing factors. Large‐scale abrupt shifts are projected for some terrestrial ecosystems under climate change, particularly in tropical and high‐latitude regions. However, there is very little high‐resolution modelling of smaller‐scale future projected abrupt shifts in ecosystems, and relatively less focus on the potential for abrupt shifts in temperate terrestrial ecosystems. Here, we show that numerous climate‐driven abrupt shifts in vegetation carbon are projected in a high‐resolution model of Great Britain's land surface driven by two different climate change scenarios. In each scenario, the effects of climate and CO2 combined are isolated from the effects of climate change alone. We use a new algorithm to detect and classify abrupt shifts in model time series, assessing the sign and strength of the non‐linear responses. The abrupt ecosystem changes projected are non‐linear responses to climate change, not simply driven by abrupt shifts in climate. Depending on the scenario, 374–1,144 grid cells of 1.5 km × 1.5 km each, comprising 0.5%–1.5% of Great Britain's land area show abrupt shifts in vegetation carbon. We find that abrupt ecosystem shifts associated with increases (rather than decreases) in vegetation carbon, show the greatest potential for early warning signals (rising autocorrelation and variance beforehand). In one scenario, 89% of abrupt increases in vegetation carbon show increasing autocorrelation and variance beforehand. Across the scenarios, 81% of abrupt increases in vegetation carbon have increasing autocorrelation and 74% increasing variance beforehand, whereas for decreases in vegetation carbon these figures are 56% and 47% respectively. Our results should not be taken as specific spatial or temporal predictions of abrupt ecosystem change. However, they serve to illustrate that numerous abrupt shifts in temperate terrestrial ecosystems could occur in a changing climate, with some early warning signals detectable beforehand.  相似文献   

6.
The energy and materials that move across ecosystem boundaries influence food web structure and key ecosystem functions. Despite the acknowledged importance of such ecological subsidies, surprisingly little information is available regarding the role of environmental temperature in influencing subsidy quality and the response of the recipient ecosystem. We evaluated the impacts of temperature‐mediated changes in leaves from deciduous trees, an important subsidy from terrestrial to freshwater ecosystems, on both the producer‐based and detritivore‐based components of a pelagic pond food web in a field mesocosm experiment. We hypothesized that variation in leaf chemistry driven by increased soil temperature would alter both the quality of leaf subsidies and the pond response. We collected red maple Acer rubrum leaves from heated and ambient temperature plots from the long‐term soil warming experiment at the Harvard Experimental Forest and added them to 167‐l field mesocosms containing established plankton communities, creating ‘no leaf’, ‘ambient leaf’ and ‘heated leaf’ treatments during autumn 2012. We then monitored physical, chemical, and biological responses to treatments until the mesocosms froze six weeks later. Experimental soil warming altered the chemical composition of deciduous leaves, the physical and chemical environment of the aquatic ecosystems to which leaves were added, and the pelagic pond food webs as measured by community composition. Compared to leaves from ambient‐temperature soils, leaves from warmed soils initially resulted in lower water column phosphorus and dissolved organic carbon, reducing bacterial densities. However, the diminished carbon and phosphorus resulting from soil warming also increased light availability that ultimately stimulated cladoceran zooplankton relative to ambient‐temperature leaves. Our results suggest that changes in temperature can alter ecological subsidies in unanticipated ways, and suggest that accurately predicting the potential consequences of climate change will require conducting research across ecosystem boundaries.  相似文献   

7.
Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage—a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte‐dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year‐round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock‐dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short‐ and long‐term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become growing season carbon sources. Warming instead causes a persistent shift from heterotrophic to more autotrophic control of the growing season carbon cycle in these carbon‐rich permafrost ecosystems.  相似文献   

8.
Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0–150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C‐N‐P stoichiometry across subtropical China, where soils are P‐impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C‐N‐P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO2 concentration and regional warming. Our findings revealed that the responses of soil C‐N‐P and stoichiometry to long‐term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations.  相似文献   

9.
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long‐term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long‐lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long‐term, large‐scale global change experiments with process studies and modeling. Long‐term global change manipulative experiments, especially in high‐priority ecosystems such as tropical forests and high‐latitude regions, are essential to maximize information gain concerning future states of the earth system. The long‐term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long‐term experiments and process studies together with information from long‐term observations, surveys, and space‐for‐time studies along environmental and biological gradients. Future research programs with coordinated long‐term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long‐term ecosystem dynamics in response to global change.  相似文献   

10.
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.  相似文献   

11.
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.  相似文献   

12.
Effects of climate warming and changing precipitation on ecosystem carbon fluxes have been intensively studied. However, how they co‐regulate carbon fluxes is still elusive for some understudied ecosystems. To fill the gap, we examined net ecosystem productivity (NEP), gross ecosystem productivity (GEP,) and ecosystem respiration (ER) responses to multilevel of temperature increments (control, warming 1, warming 2, warming 3, warming 4) in three contrasting hydrological growing seasons in a typical semiarid alpine meadow. We found that carbon fluxes responded to precipitation variations more strongly in low‐level warming treatments than in high‐level ones. The distinct responses were attributable to different soil water conditions and community composition under low‐level and high‐level warming during the three growing seasons. In addition, carbon fluxes were much more sensitive to decreased than to increased precipitation in low‐level warming treatments, but not in high‐level ones. At a regional scale, this negative asymmetry was further corroborated. This study reveals that future precipitation changes, particularly decreased precipitation would induce significant change in carbon fluxes, and the effect magnitude is regulated by climate warming size.  相似文献   

13.
Feedback between global carbon (C) cycles and climate change is one of the major uncertainties in projecting future global warming. Coupled carbon–climate models all demonstrated a positive feedback between terrestrial C cycle and climate warming. The positive feedback results from decreased net primary production (NPP) in most models and increased respiratory C release by all the models under climate warming. Those modeling results present interesting hypotheses of future states of ecosystems and climate, which are yet to be tested against experimental results. In this study, we examined ecosystem C balance and its major components in a warming and clipping experiment in a North America tallgrass prairie. Infrared heaters have been used to elevate soil temperature by approximately 2 °C continuously since November 1999. Clipping once a year was to mimic hay or biofuel feedstock harvest. On average of data over 6 years from 2000 to 2005, estimated NPP under warming increased by 14% without clipping (P<0.05) and 26% with clipping (P<0.05) in comparison with that under control. Warming did not result in instantaneous increases in soil respiration in 1999 and 2000 but significantly increased it by approximately 8% without clipping (P<0.05) from 2001 to 2005. Soil respiration under warming increased by 15% with clipping (P<0.05) from 2000 to 2005. Warming‐stimulated plant biomass production, due to enhanced C4 dominance, extended growing seasons, and increased nitrogen uptake and use efficiency, offset increased soil respiration, leading to no change in soil C storage at our site. However, biofuel feedstock harvest by biomass removal resulted in significant soil C loss in the clipping and control plots but was carbon negative in the clipping and warming plots largely because of positive interactions of warming and clipping in stimulating root growth. Our results demonstrate that plant production processes play a critical role in regulation of ecosystem carbon‐cycle feedback to climate change in both the current ambient and future warmed world.  相似文献   

14.
Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai‐Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized (14C‐enriched) carbon in the subsoil slow‐cycling pool (silt‐clay fraction) but promoted the decomposition of plant‐derived lignin in the fast‐cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sugars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deepening roots in a wide range of ecosystems, root‐driven accrual of slow‐cycling pool may represent an important and overlooked mechanism for a potential long‐term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change.  相似文献   

15.
Northern temperate ecosystems are experiencing warmer and more variable winters, trends that are expected to continue into the foreseeable future. Despite this, most studies have focused on climate change impacts during the growing season, particularly when comparing responses across different vegetation cover types. Here we examined how a perennial grassland and adjacent mixed forest ecosystem in New Hampshire, United States, responded to a period of highly variable winters from 2014 through 2017 that included the warmest winter on record to date. In the grassland, record‐breaking temperatures in the winter of 2015/2016 led to a February onset of plant growth and the ecosystem became a sustained carbon sink well before winter ended, taking up roughly 90 g/m2 more carbon during the winter to spring transition than in other recorded years. The forest was an unusually large carbon source during the same period. While forest photosynthesis was restricted by leaf‐out phenology, warm winter temperatures caused large pulses of ecosystem respiration that released nearly 230 g C/m2 from February through April, more than double the carbon losses during that period in cooler years. These findings suggest that, as winters continue to warm, increases in ecosystem respiration outside the growing season could outpace increases in carbon uptake during a longer growing season, particularly in forests that depend on leaf‐out timing to initiate carbon uptake. In ecosystems with a perennial leaf habit, warming winter temperatures are more likely to increase ecosystem carbon uptake through extension of the active growing season. Our results highlight the importance of understanding relationships among antecedent winter conditions and carbon exchange across land‐cover types to understand how landscape carbon exchange will change under projected climate warming.  相似文献   

16.
Global mean temperature is predicted to increase by 2–7 °C and precipitation to change across the globe by the end of this century. To quantify climate effects on ecosystem processes, a number of climate change experiments have been established around the world in various ecosystems. Despite these efforts, general responses of terrestrial ecosystems to changes in temperature and precipitation, and especially to their combined effects, remain unclear. We used meta‐analysis to synthesize ecosystem‐level responses to warming, altered precipitation, and their combination. We focused on plant growth and ecosystem carbon (C) balance, including biomass, net primary production (NPP), respiration, net ecosystem exchange (NEE), and ecosystem photosynthesis, synthesizing results from 85 studies. We found that experimental warming and increased precipitation generally stimulated plant growth and ecosystem C fluxes, whereas decreased precipitation had the opposite effects. For example, warming significantly stimulated total NPP, increased ecosystem photosynthesis, and ecosystem respiration. Experimentally reduced precipitation suppressed aboveground NPP (ANPP) and NEE, whereas supplemental precipitation enhanced ANPP and NEE. Plant productivity and ecosystem C fluxes generally showed higher sensitivities to increased precipitation than to decreased precipitation. Interactive effects of warming and altered precipitation tended to be smaller than expected from additive, single‐factor effects, though low statistical power limits the strength of these conclusions. New experiments with combined temperature and precipitation manipulations are needed to conclusively determine the importance of temperature–precipitation interactions on the C balance of terrestrial ecosystems under future climate conditions.  相似文献   

17.
Increased drought combined with extreme episodes of heatwaves is triggering severe impacts on vegetation growth, particularly for plant communities in arid and semiarid ecosystems. Although there is an abundance of short‐term field drought experiments in natural ecosystems, remaining knowledge gaps limit the understanding and prediction of vegetation growth to ongoing and future climate scenarios. Here, we assessed the impacts of long‐term (1999–2016) experimental drought (ca. ?30% rainfall) on the vegetation growth of a Mediterranean high (H) and low (L)‐canopy forests and an early‐successional shrubland, as indicated by above‐ground biomass increment (ABI) and standing density, respectively. We found habitat context (impact of historical climate change, soil depth and successional status) of the study sites significantly affected the magnitude of climate impacts; there were synergistic effects of experimental drought and meteorological drought (Standardised Precipitation–Evapotranspiration Index, SPEI) as well as extreme dry years on vegetation growth. Long‐term experimental drought decreased the ABI for the two forest canopy types and the standing density for the shrubland. Water availabilities in winter–spring (SPEIs) were positively correlated with the ABI and standing density. Moreover, experimental drought decreased the vegetation growth in extreme dry years for the shrubland. We propose that future work not only study the vegetation dynamics with physiological, phenological and demographical changes in long‐term processes and across climate gradients, but also should explore the changes of multiple functions simultaneously (e.g. multifunctionality) under long‐term processes and extremes. This type of analysis of long‐term data is essential to understand and predict biodiversity loss, composition shifts, declines in ecosystem function and carbon budgets at temporal and spatial scales, to enable policy makers to design and implement strategies for the maintenance of sustainable ecosystem function under future climate change scenarios.  相似文献   

18.
Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation.  相似文献   

19.
Widespread changes in arctic and boreal Normalized Difference Vegetation Index (NDVI) values captured by satellite platforms indicate that northern ecosystems are experiencing rapid ecological change in response to climate warming. Increasing temperatures and altered hydrology are driving shifts in ecosystem biophysical properties that, observed by satellites, manifest as long‐term changes in regional NDVI. In an effort to examine the underlying ecological drivers of these changes, we used field‐scale remote sensing of NDVI to track peatland vegetation in experiments that manipulated hydrology, temperature, and carbon dioxide (CO2) levels. In addition to NDVI, we measured percent cover by species and leaf area index (LAI). We monitored two peatland types broadly representative of the boreal region. One site was a rich fen located near Fairbanks, Alaska, at the Alaska Peatland Experiment (APEX), and the second site was a nutrient‐poor bog located in Northern Minnesota within the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found that NDVI decreased with long‐term reductions in soil moisture at the APEX site, coincident with a decrease in photosynthetic leaf area and the relative abundance of sedges. We observed increasing NDVI with elevated temperature at the SPRUCE site, associated with an increase in the relative abundance of shrubs and a decrease in forb cover. Warming treatments at the SPRUCE site also led to increases in the LAI of the shrub layer. We found no strong effects of elevated CO2 on community composition. Our findings support recent studies suggesting that changes in NDVI observed from satellite platforms may be the result of changes in community composition and ecosystem structure in response to climate warming.  相似文献   

20.
Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long‐term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant‐available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N‐availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3?‐N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long‐term changes in soil N‐cycling that would be reflected in soil δ15N values. We found that soil δ15N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号