首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi‐deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%–50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity‐allocation‐turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics.  相似文献   

2.
The allocation and cycling of carbon (C) within forests is an important component of the biospheric C cycle, but is particularly understudied within tropical forests. We synthesise reported and unpublished results from three lowland rainforest sites in Amazonia (in the regions of Manaus, Tapajós and Caxiuanã), all major sites of the Large‐Scale Biosphere–Atmosphere Programme (LBA). We attempt a comprehensive synthesis of the C stocks, nutrient status and, particularly, the allocation and internal C dynamics of all three sites. The calculated net primary productivities (NPP) are 10.1±1.4 Mg C ha−1 yr−1 (Manaus), 14.4±1.3 Mg C ha−1 yr−1 (Tapajós) and 10.0±1.2 Mg C ha−1 yr−1 (Caxiuanã). All errors bars report standard errors. Soil and leaf nutrient analyses indicate that Tapajós has significantly more plant‐available phosphorus and calcium. Autotrophic respiration at all three sites (14.9–21.4 Mg C ha yr−1) is more challenging to measure, with the largest component and greatest source of uncertainty being leaf dark respiration. Comparison of measured soil respiration with that predicted from C cycling measurements provides an independent constraint. It shows general good agreement at all three sites, with perhaps some evidence for measured soil respiration being less than expected. Twenty to thirty percent of fixed C is allocated belowground. Comparison of gross primary productivity (GPP), derived from ecosystem flux measurements with that derived from component studies (NPP plus autotrophic respiration) provides an additional crosscheck. The two approaches are in good agreement, giving increased confidence in both approaches to estimating GPP. The ecosystem carbon‐use efficiency (CUEs), the ratio of NPP to GPP, is similar at Manaus (0.34±0.10) and Caxiuanã (0.32±0.07), but may be higher at Tapajós (0.49±0.16), although the difference is not significant. Old growth or infertile tropical forests may have low CUE compared with recently disturbed and/or fertile forests.  相似文献   

3.
4.
Aim To develop and test a simple climate‐based ecophysiological model of above‐ground biomass – an approach that can be applied directly to predicting the effects of climate change on forest carbon stores. Location Humid lowland forests world‐wide. Methods We developed a new approach to modelling the aboveground biomass of old‐growth forest (AGBmax) based on the influences of temperature on gross primary productivity (GPP) and what we call total maintenance cost (TMC), which includes autotrophic respiration as well as leaf, stem and other plant construction required to maintain biomass. We parameterized the models with measured carbon fluxes and tested them by comparing predicted AGBmax with measured AGB for another 109 old‐growth sites. Results Our models explained 57% of the variation in GPP across 95 sites and 79% of the variation in TMC across 17 sites. According to the best‐fit models, the ratio of GPP to maintenance cost per unit biomass (MCB) peaks at 16.5 °C, indicating that this is the air temperature leading to the highest possible AGBmax when temperatures are constant. Seasonal temperature variation generally reduces predicted AGBmax, and thus maritime temperate climates are predicted to have the highest AGBmax. The shift in temperatures from temperate maritime to tropical climates increases MCB more than GPP, and thus decreases AGBmax. Overall, our model explains exactly 50% of the variation in AGB among humid lowland old‐growth forests. Main conclusions Temperature plays an important role in explaining global variation in biomass among humid lowland old‐growth forests, a role that can be understood in terms of the dual effects of temperature on GPP and TMC. Our simple model captures these influences, and could be an important tool for predicting the effects of climate change on forest carbon stores.  相似文献   

5.
The global relationship between forest productivity and biomass   总被引:2,自引:0,他引:2  
Aim  We aim to determine the empirical relationship between above-ground forest productivity and biomass. There are theoretical reasons to assume a relationship between forest structure and function, as both may be influenced by similar ecological factors such as moisture supply. Also, dynamic global vegetation model simulations imply that any increase in forest productivity driven by climate change will result in increases in biomass and therefore carbon storage. However, few studies have explored the strength and form of the relationship between forest productivity and biomass, whether in space or time.
Location Global scale.
Methods  We collated a large data set of above-ground biomass (AGB) and above-ground net primary productivity (ANPP) and tested the extent to which spatial variation in forest biomass across the Earth can be predicted from forest productivity.
Results  The global ANPP–AGB relationship differs fundamentally from the strongly positive, linear relationship reported in earlier analyses, which mostly lacked tropical sites. AGB begins to peak at c . 15–20 Mg ha−1 year−1 ANPP, plateaus at ANPP > 20–25 Mg ha−1 year−1, and may actually decline at higher levels of production.
Main conclusions  High turnover rates in high-productivity forests may limit AGB by promoting the dominance of species with a low wood density. Predicted increases in ANPP will not necessarily favour increases in forest carbon storage, especially if changes in productivity are accompanied by compositional shifts.  相似文献   

6.
The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old‐growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow‐growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350 Mg dry weight ha?1) and declining to 200–250 Mg dry weight ha?1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106 km2 in 2000) to be 93±23 Pg C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified.  相似文献   

7.
Large‐scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar‐induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007–2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment‐2 satellite, benchmarked with county‐level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF‐based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon‐use‐efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.  相似文献   

8.
S. LUYSSAERT  I. INGLIMA  M. JUNG  A. D. RICHARDSON  M. REICHSTEIN  D. PAPALE  S. L. PIAO  E. ‐D. SCHULZE  L. WINGATE  G. MATTEUCCI  L. ARAGAO  M. AUBINET  C. BEER  C. BERNHOFER  K. G. BLACK  D. BONAL  J. ‐M. BONNEFOND  J. CHAMBERS  P. CIAIS  B. COOK  K. J. DAVIS  A. J. DOLMAN  B. GIELEN  M. GOULDEN  J. GRACE  A. GRANIER  A. GRELLE  T. GRIFFIS  T. GRÜNWALD  G. GUIDOLOTTI  P. J. HANSON  R. HARDING  D. Y. HOLLINGER  L. R. HUTYRA  P. KOLARI  B. KRUIJT  W. KUTSCH  F. LAGERGREN  T. LAURILA  B. E. LAW  G. LE MAIRE  A. LINDROTH  D. LOUSTAU  Y. MALHI  J. MATEUS  M. MIGLIAVACCA  L. MISSON  L. MONTAGNANI  J. MONCRIEFF  E. MOORS  J. W. MUNGER  E. NIKINMAA  S. V. OLLINGER  G. PITA  C. REBMANN  O. ROUPSARD  N. SAIGUSA  M. J. SANZ  G. SEUFERT  C. SIERRA  M. ‐L. SMITH  J. TANG  R. VALENTINI  T. VESALA  I. A. JANSSENS 《Global Change Biology》2007,13(12):2509-2537
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO2 carbon fluxes are not presently being adequately accounted for.  相似文献   

9.
10.
利用美国环境预测中心的再分析气象资料和由GIMMS NDVI 资料生成的叶面积指数对BEPS生态模型进行驱动,模拟分析了2000-2005年亚洲东部地区总初级生产力(GPP)和总净初级生产力(NPP)的时空变化特征.在进行区域模拟计算前,使用15个站点不同生态系统的GPP观测数据及1300个样点的NPP观测数据对模型进行验证.结果表明: BEPS模型能较好地模拟不同生态系统的GPP和NPP变化,模拟的GPP与观测数据之间的R2为0.86~0.99,均方根误差(RMSE)为0.2~1.2 g C·m-2·d-1;BEPS模拟值能够解释78%的年NPP变化,其RMSE为118 g C·m-2·a-1.2000-2005年,亚洲东部地区GPP和NPP总量平均值分别为21.7和10.5 Pg C·a-1.NPP和GPP具有相似的时空变化特征.研究期间,NPP总量的变化范围为10.2~10.7 Pg C·a-1, 变异系数为2.2%.NPP由东南向西北显著减少,高值区〖JP2〗(>1000 g C·m-2·a-1)出现在东南亚海岛国家,我国的西北干旱沙漠地区为低值区(<30 g C·m-2·a-1),〖JP〗其空间格局主要由气候因子决定.不同国家的人均NPP差异很大,其中,蒙古最高,达70217 kg C·a-1,远高于中国的人均NPP(1921 kg C·a-1),印度的人均NPP最小,为757 kg C·a-1.  相似文献   

11.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

12.
地下根系是草原生态系统的重要组成部分,其生物量及其净生产力对地下碳库具有直接与间接作用,分析地下生物量季节动态与周转对深入揭示草原生态系统碳库动态及其固碳速率与潜力具有重要意义。应用钻土芯法对不同利用方式或管理措施下内蒙古草甸草原、典型草原地下生物量动态及其与温度、降水的相关性研究表明:草甸草原和典型草原地上生物量季节动态均为单峰型曲线,与上月降水显著正相关(P0.05),但地下生物量季节动态表现为草甸草原呈"S"型曲线,典型草原则是双峰型曲线,与温度、降水相关性均不显著(P0.05);两种草原根冠比和地下生物量垂直分布均为指数函数曲线,根茎型草原地下生物量集中在土壤0—5 cm,丛生型草原地下生物量集中于土壤5—10 cm,根冠比值在生长旺季(7—8月份)最小。草甸草原地下净生产力及碳储量范围分别为2167—2953 g m-2a-1和975—1329 gC m-2a-1,典型草原为2342—3333 g m-2a-1和1054—1450 gC m-2a-1,地下净生产力及其碳储量约为地上净生产力及其碳储量的10倍,具有较大的年固碳能力,且相对稳定;地下净生产力与地上净生产力呈显著负相关性(P0.05);地下生物量碳库是地上生物量碳库的10倍左右,适度放牧可增加地下生产力,但长期过度放牧显著降低其地下生物量与生产力,并使其垂直分布趋向于浅层化。  相似文献   

13.
Process‐based models are effective tools to synthesize and/or extrapolate measured carbon (C) exchanges from individual sites to large scales. In this study, we used a C‐ and nitrogen (N)‐cycle coupled ecosystem model named CN‐CLASS (Carbon Nitrogen‐Canadian Land Surface Scheme) to study the role of primary climatic controls and site‐specific C stocks on the net ecosystem productivity (NEP) of seven intermediate‐aged to mature coniferous forest sites across an east–west continental transect in Canada. The model was parameterized using a common set of parameters, except for two used in empirical canopy conductance–assimilation, and leaf area–sapwood relationships, and then validated using observed eddy covariance flux data. Leaf Rubisco‐N dynamics that are associated with soil–plant N cycling, and depend on canopy temperature, enabled the model to simulate site‐specific gross ecosystem productivity (GEP) reasonably well for all seven sites. Overall GEP simulations had relatively smaller differences compared with observations vs. ecosystem respiration (RE), which was the sum of many plant and soil components with larger variability and/or uncertainty associated with them. Both observed and simulated data showed that, on an annual basis, boreal forest sites were either carbon‐neutral or a weak C sink, ranging from 30 to 180 g C m?2 yr?1; while temperate forests were either a medium or strong C sink, ranging from 150 to 500 g C m?2 yr?1, depending on forest age and climatic regime. Model sensitivity tests illustrated that air temperature, among climate variables, and aboveground biomass, among major C stocks, were dominant factors impacting annual NEP. Vegetation biomass effects on annual GEP, RE and NEP showed similar patterns of variability at four boreal and three temperate forests. Air temperature showed different impacts on GEP and RE, and the response varied considerably from site to site. Higher solar radiation enhanced GEP, while precipitation differences had a minor effect. Magnitude of forest litter content and soil organic matter (SOM) affected RE. SOM also affected GEP, but only at low levels of SOM, because of low N mineralization that limited soil nutrient (N) availability. The results of this study will help to evaluate the impact of future climatic changes and/or forest C stock variations on C uptake and loss in forest ecosystems growing in diverse environments.  相似文献   

14.
15.
红树林是滨海湿地“蓝碳”的主要类型之一.准确和定位评估不同植物群落的固碳能力,对于红树林保育管理和恢复造林具有指导作用.本研究对深圳福田红树林4种代表性群落(白骨壤群落、秋茄群落、海桑群落、无瓣海桑群落)的各个植被碳库组分(乔木植物生物量碳库、林下灌丛碳库、呼吸根碳库、枯立木碳库、枯倒木碳库和枯枝落叶层碳库等)进行调查,计算各群落的植被碳储量,并通过生长增量-凋落物产量法计算得到各群落的净初级生产力.结果表明: 白骨壤群落、秋茄群落、海桑群落和无瓣海桑群落的植被碳储量分别为28.7、127.6、100.1、73.6 t C·hm-2,各群落的净初级生产力分别为8.75、7.67、9.60、11.87 t C·hm-2·a-1.位于深圳市中心的福田红树林,每年固定大气CO2高达4000 t.本研究结果将为红树林“蓝碳”碳汇功能的评估提供理论指导,并为我国红树林碳汇林建设提供依据.  相似文献   

16.
干旱胁迫降低了内蒙古羊草草原的碳累积   总被引:3,自引:0,他引:3       下载免费PDF全文
采用涡度相关法, 分析了2004年(平水年)和2005-2006年(干旱年)生长季内蒙古锡林河流域羊草(Leymus chinensis)草原的净生态系统碳交换(net ecosystem exchange, NEE)、总初级生产力(gross primary productivity, GPP)和生态系统呼吸(ecosystem respiration, Re)的季节和年度变化。结果表明: 平水年羊草草原的日最大GPPRe分别为4.89和1.99 g C·m-2·d-1, 而干旱年GPPRe分别为1.53-3.01和1.38-1.77 g C·m-2·d-1。与平水年相比, 干旱年日最大GPP、Re分别下降了38%-68%和11%-12%。平水年羊草草原累积的GPPRe分别为294和180 g C·m-2, 而在干旱年分别为102-123 g C·m-2和132-158 g C·m-2。和平水年相比, 干旱年的GPPRe分别下降了58%-65%和12%-27%。用Van’t Hoff模型模拟的8个窄土壤含水量(θ)跨度生态系统呼吸(Re)对土壤温度(Ts)的敏感程度表明: 曲线斜率在θ = 0.16-0.17 m3·m-3范围内达到最大, 高于或者低于这个阈值, ReTs的敏感度降低。干旱胁迫降低了生态系统生产力和生态系统呼吸量。与平水年相比, 干旱年的GPPRe下降的幅度更大, 干旱胁迫降低了内蒙古羊草草原的碳累积, 使生态系统由碳汇变为碳源。  相似文献   

17.
碳利用效率(CUE)是植被生态系统的一个重要功能参数, 反映了植被生态系统的固碳能力, 适用于分析不同时间段内器官、个体和群落等不同层次的碳收支趋势, 因而有助于对陆地生态系统碳功能的确定与预测, 引起了广泛关注。该研究采用生物计量法, 测定和计算了川西贡嘎山东坡峨眉冷杉(Abies fabri)成熟林树木不同器官的呼吸与净生产力动态, 分析了乔木层及其各器官CUE动态及主要影响因子, 并估算了乔木层不同径级树木CUE。主要结果: (1)乔木层各器官月呼吸速率与温度呈正相关关系, 以细根月呼吸速率为最大; 不同径级树木年呼吸量无显著差异, 以小径级树木树干的年呼吸量为最小。(2)乔木层细根和树干月净初级生产力(NPP)均随温度增加而增加, 以细根月NPP为最大。小径级树木年NPP最大, 其针叶年NPP也显著高于中径级和大径级树木。(3)林分乔木层及其各器官CUE大多集中在0.30-0.60之间, 其中细根、树干CUE具有相似的月变化动态, 均随温度的升高而上升。不同径级树木CUE及树干和针叶CUE均随树木个体的增大而明显下降。(4)气温和土壤温度与乔木层树干和细根CUE呈正相关关系, 而降水量与针叶CUE呈负相关关系。细根CUE与树干CUE呈正相关关系,与针叶CUE呈负相关关系。峨眉冷杉成熟林乔木层CUE主要取决于树干和细根CUE。该研究证实了川西亚高山暗针叶成熟林仍具有较强的碳汇功能, 在区域碳储存和森林生态系统碳循环中发挥着极其重要的作用。  相似文献   

18.
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m?2 year?1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m?2 year?1). As N addition increased beyond 10 g N m?2 year?1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.  相似文献   

19.
吴建平  王思敏  蔡慕天  吴彬 《生态学报》2019,39(20):7771-7779
陆地生态系统碳循环是生物地球化学循环的关键过程之一。碳利用效率(carbon use efficiency,CUE)是描述生物用于形成生物量的碳占其所吸收总碳比例的一个定量指标,反映了生物的碳同化能力和固碳潜力,是研究生态系统碳循环中碳通量和碳分配模式的重要参数,能有效预测生物与周围环境之间的碳流通和碳反馈。目前,关于CUE的研究还不充分,尤其是对CUE及其影响因子的系统性综合论述还较少。为此,本文综述了国内外有关碳利用效率(植物碳利用效率(CUEa)和微生物碳利用效率(CUEh))的研究方法和研究进展,分析了CUEa和CUEh的异同、内在联系及作用机理。基于分析对今后的研究提出几点展望:(1)优化测量手段和计算方法,适当地调整参数,将模型方法与实测数据结合,使CUE的定量描述结果更准确;(2)结合不同尺度的研究结果,探究个体、种群、群落、生态系统等不同空间尺度和时间尺度上CUE的联系及变化规律,为碳循环和碳流通的时空变化规律提供新证据;(3)研究CUE对全球变化(如高温、干旱、CO2浓度增加等)的响应,探讨CUE对未来气候情景的响应和适应机制;(4)开展有关物种丰富度或生物多样性的梯度变化对CUE的影响研究,阐释物种多样性减少或物种灭绝等现象对碳循环过程的影响,将生态系统物种多样性与生态系统功能相联系;(5)加强对CUEh的研究,定量探究其与CUEa的异同,并将二者结合起来,更全面地解释地上-地下生态系统碳的分配特征。同时适当开展动物CUE的研究,目前该类研究还缺乏系统性。  相似文献   

20.
Carbon dioxide (CO2) enhancement (eCO2) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water‐use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m?2 yr?1) and eCO2 × aN using open‐top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2, increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2, aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (= 0.731) or WUE (= 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast‐growing species (Schima superba). Nitrogen‐fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号