首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

2.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

3.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

4.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

5.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

6.
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual—Norway spruce with average soil water table of ?40 cm; (2) willow with groundwater at ?20 cm; (3) reed canary grass with groundwater at ?10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high‐resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree‐ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO2eq ha?1 year?1, respectively. The total soil emissions (including litter and peat respiration CO2 + N2O + CH4) were 33.1, 19.3, 15.3, and 11.0 Mg CO2eq ha?1 year?1, respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost–benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy‐making.  相似文献   

7.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

8.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

9.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

10.
Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (?20 cm relative to control) and N deposition (30 kg N ha?1 yr?1) on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no‐WTL plots, but had no significant effect on net CO2 uptake or N2O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no‐N deposition plots and turned the mesocosms from N2O sinks to N2O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100‐year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to ?480.1 g CO2‐eq m?2 mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to ?163.8 g CO2‐eq m?2, mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem‐scale GHG responses to environmental changes.  相似文献   

11.
《Global Change Biology》2018,24(5):1843-1872
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.  相似文献   

12.
Methane (CH4) is an important greenhouse gas, contributing 0.4–0.5 W m?2 to global warming. Methane emissions originate from several sources, including wetlands, rice paddies, termites and ruminating animals. Previous measurements of methane flux from farm animals have been carried out on animals in unnatural conditions, in laboratory chambers or fitted with cumbersome masks. This study introduces eddy covariance measurements of CH4, using the newly developed LI‐COR LI‐7700 open‐path methane analyser, to measure field‐scale fluxes from sheep grazing freely on pasture. Under summer conditions, fluxes of methane in the morning averaged 30 nmol m?2 s?1, whereas those in the afternoon were above 100 nmol m?2 s?1, and were roughly two orders of magnitude larger than the small methane emissions from the soil. Methane emissions showed no clear relationship with air temperature or photosynthetically active radiation, but some diurnal pattern was apparent, probably linked to sheep grazing behaviour and metabolism. Over the measurement period (days 60–277, year 2010), cumulative methane fluxes were 0.34 mol CH4 m?2, equating to 134.3 g CO2 equivalents m?2. By comparison, a carbon dioxide (CO2) sink of 819 g CO2 equivalents m?2 was measured over the same period, but it is likely that much of this would be released back to the atmosphere during the winter or as off‐site losses (through microbial and animal respiration). By dividing methane fluxes by the number of sheep in the field each day, we calculated CH4 emissions per head of livestock as 7.4 kg CH4 sheep?1 yr?1, close to the published IPCC emission factor of 8 kg CH4 sheep?1 yr?1.  相似文献   

13.
Oilseed rape (OSR, Brassica napus L.) is an important feedstock for biodiesel; hence, carbon dioxide (CO2), methane (CH4) and particularly fertilizer‐derived nitrous oxide (N2O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data. Substrates of nitrification [ammonium (NH4)] and denitrification [nitrate (NO3)], the predominant N2O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: (i) produce an accurate GHG budget of fertilizer application; (ii) characterize short‐ to medium‐term variation in GHG fluxes; (iii) establish the processes driving N2O emission. Three treatments were applied twice, 1 week apart: ammonium nitrate fertilizer (NH4NO3, 69 kg‐N ha?1) mimicking the farm management, ammonium chloride (NH4Cl, 34.4 kg‐N ha?1) and sodium nitrate (NaNO3, 34.6 kg‐N ha?1). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO2, CH4 and N2O fluxes at unprecedented high temporal and spatial resolution from OSR. During 3 weeks following the fertilizer application, CH4 fluxes were negligible, but all treatments were a net sink for CO2 (ca. 100 g CO2 m?2). Cumulative N2O emissions (ca. 120 g CO2‐eq m?2) from NH4NO3 were significantly greater (P < 0.04) than from NaNO3 (ca. 80 g CO2‐eq m?2), but did not differ from NH4Cl (ca. 100 g CO2‐eq m?2) and reduced the carbon sink of photosynthesis so that OSR was a net GHG source in the fertilizer treatment. Diurnal variation in N2O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N2O emission and thus should be considered in future process‐based models of GHG emissions.  相似文献   

14.
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus × giganteus) will be grown on the current maize‐producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high‐rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha?1 yr?1, with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha?1 yr?1. Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.  相似文献   

15.
We estimated the long‐term carbon balance [net biome production (NBP)] of European (EU‐25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m?2 yr?1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU‐25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m?2 yr?1. In addition, three process‐based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m?2 yr?1 or a small source of 7.6 g C m?2 yr?1. Neither the soil C inventory data, nor the process model results support the previous European‐scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m?2 yr?1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ?8.3 ± 13 and ?13 ± 33 g C m?2 yr?1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m?2 yr?1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m?2 yr?1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42–47 g C Eq m?2 yr?1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate.  相似文献   

16.
Land‐use change to bioenergy crop production can contribute towards addressing the dual challenges of greenhouse gas mitigation and energy security. Realisation of the mitigation potential of bioenergy crops is, however, dependent on suitable crop selection and full assessment of the carbon (C) emissions associated with land conversion. Using eddy covariance‐based estimates, ecosystem C exchange was studied during the early‐establishment phase of two perennial crops, C3 reed canary grass (RCG) and C4 Miscanthus, planted on former grassland in Ireland. Crop development was the main determinant of net carbon exchange in the Miscanthus crop, restricting significant net C uptake during the first 2 years of establishment. The Miscanthus ecosystem switched from being a net C source in the conversion year to a strong net C sink (?411 ± 63 g C m?2) in the third year, driven by significant above‐ground growth and leaf expansion. For RCG, early establishment and rapid canopy development facilitated a net C sink in the first 2 years of growth (?319 ± 57 (post‐planting) and ?397 ± 114 g C m?2, respectively). Peak seasonal C uptake occurred three months earlier in RCG (May) than Miscanthus (August), however Miscanthus sustained net C uptake longer into the autumn and was close to C‐neutral in winter. Leaf longevity is therefore a key advantage of C4 Miscanthus in temperate climates. Further increases in productivity are projected as Miscanthus reaches maturity and are likely to further enhance the C sink potential of Miscanthus relative to RCG.  相似文献   

17.
Understanding the potential for greenhouse gas (GHG) mitigation in agricultural lands is a critical challenge for climate change policy. This study uses the DAYCENT ecosystem model to predict GHG mitigation potentials associated with soil management in Chinese cropland systems. Application of ecosystem models, such as DAYCENT, requires the evaluation of model performance with data sets from experiments relevant to the climate and management of the study region. DAYCENT was evaluated with data from 350 cropland experiments in China, including measurements of nitrous oxide emissions (N2O), methane emissions (CH4), and soil organic carbon (SOC) stock changes. In general, the model was reasonably accurate with R2 values for model predictions vs. measurements ranging from 0.71 to 0.85. Modeling efficiency varied from 0.65 for SOC stock changes to 0.83 for crop yields. Mitigation potentials were estimated on a yield basis (Mg CO2‐equivalent Mg?1Yield). The results demonstrate that the largest decrease in GHG emissions in rainfed systems are associated with combined effect of reducing mineral N fertilization, organic matter amendments and reduced‐till coupled with straw return, estimated at 0.31 to 0.83 Mg CO2‐equivalent Mg?1Yield. A mitigation potential of 0.08 to 0.36 Mg CO2‐equivalent Mg?1Yield is possible by reducing N chemical fertilizer rates, along with intermittent flooding in paddy rice cropping systems.  相似文献   

18.
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS, soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4, suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2-eq year−1 vs. grassland, 0.58 Pg CO2-eq year−1) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2-eq year−1 vs. grassland, 0.18 Pg CO2-eq year−1) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%–4.8%) by the combined effects of its stimulation of N2O emissions together with the reduced soil uptake of CH4.  相似文献   

19.
The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2, CH4 and N2O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha?1 year?1 per kg N ha?1 year?1) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2/year. It also increased net soil GHG emissions by 10.20 Pg CO2‐Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.  相似文献   

20.
Wetlands are the single largest natural source of atmospheric methane (CH4), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between “bottom‐up” and “top‐down” estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m?2 year?1 in tundra bogs to 78 g m?2 year?1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m?2 year?1. The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process‐based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data‐constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high‐latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号