首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
    
Disease severity assessment by means of a scoring scale, especially for angular leaf spot (Pseudocercospora griseola) in common bean, is hindered in experiments for assessment of progenies and/or breeding lines due to lack of uniformity of occurrence of the pathogens and segregation within progenies. The purpose of this study was to estimate the efficiency of the use of one plant per plot in assessing the severity of angular leaf spot in experiments for assessment of progenies and/or breeding lines in the common bean crop. To that end, two experimental strategies were used – one of them using one plant per plot and another using a standard size plot (SPP) (2–4‐m length rows). The experiments were conducted in the period from November 2011 to May 2012 in the municipalities of Lavras and Lambari, state of Minas Gerais, Brazil. Forty‐one lines from the breeding programme of the Universidade Federal de Lavras (UFLA) and from other research institutions were assessed, which differed in regard to their degree of susceptibility to P. griseola. The lines were assessed in regard to the severity of said disease using a five‐degree diagrammatic scale. In all the one plant per plot experiments, severity scores of angular leaf spot from the beginning of its occurrence, and later in intervals ranging from 7 to 12 days, were obtained. In the experiment with the SPP, assessment was made a few days prior to grain harvest. Estimates of the correlations between severity scores and grain yield (GY) were mostly of small magnitude. There was good coincidence between the lines classified as more resistant or more susceptible to the pathogen under the two conditions.  相似文献   

3.
    
The reuse of wastewater is important for reducing costs involved with algal lipid production. However, nutrient limitations, wastewater‐borne microbes, and mixotrophic growth can significantly affect biomass yields and lipid/biomass ratios. This research compared the growth performances of both Chlorella vulgaris and Pseudokirchneriella subcapitata on domestic wastewater effluent. The experiments were conducted in the presence and absence of wastewater‐borne bacteria, while additionally assessing the impact of distinct nitrate and glucose supplementations. When compared to the sterilized controls, the presence of wastewater‐borne bacteria in the effluent reduced C. vulgaris and P. subcapitata total biomass production by 37% and 46%, respectively. In the corresponding treatments supplemented with glucose and nitrate, total biomass production increased by 12% and 61%, respectively. The highest biomass production of 1.11 and 0.72 g · L?1 was, however, observed in the sterilized treatments with both glucose and nitrate supplementations for C. vulgaris and P. subcapitata, respectively. Lipid to biomass ratios were, on average, threefold higher when only nitrate was introduced in the sterilized treatments for both species (0.4 and 0.5, respectively). Therefore, the combination of nitrate and glucose supplementation is shown to be an important strategy for enhancing algal lipid and biomass production when those algae are grown in the presence of wastewater‐borne bacteria. On the other hand, in the absence of wastewater‐borne bacteria, only nitrate supplementation can significantly improve lipid/biomass ratios.  相似文献   

4.
    
Energy crops are currently promoted as potential sources of alternative energy that can help mitigate the climate change caused by greenhouse gases (GHGs). The perennial crop Miscanthus × giganteus is considered promising due to its high potential for biomass production under conditions of low input. However, to assess its potential for GHG mitigation, a better quantification of the crop's contribution to soil organic matter recycling under various management systems is needed. The aim of this work was to study the effect of abscised leaves on carbon (C) and nitrogen (N) recycling in a Miscanthus plantation. The dynamics of senescent leaf fall, the rate of leaf decomposition (using a litter bag approach) and the leaf accumulation at the soil surface were tracked over two 1‐year periods under field conditions in Northern France. The fallen leaves represented an average yearly input of 1.40 Mg C ha?1 and 16 kg N ha?1. The abscised leaves lost approximately 54% of their initial mass in 1 year due to decomposition; the remaining mass, accumulated as a mulch layer at the soil surface, was equivalent to 7 Mg dry matter (DM) ha?1 5 years after planting. Based on the estimated annual leaf‐C recycling rate and a stabilization rate of 35% of the added C, the annual contribution of the senescent leaves to the soil C was estimated to be approximately 0.50 Mg C ha?1yr?1 or 10 Mg C ha?1 total over the 20‐year lifespan of a Miscanthus crop. This finding suggested that for Miscanthus, the abscised leaves contribute more to the soil C accumulation than do the rhizomes or roots. In contrast, the recycling of the leaf N to the soil was less than for the other N fluxes, particularly for those involving the transfer of N from the tops of the plant to the rhizome.  相似文献   

5.
    
Sulphur (S) and nitrogen (N) deposition are important drivers of the terrestrial carbon (C) and N cycling. We analyzed changes in C and N pools in soil and tree biomass at a highly acidified spruce site in the Czech Republic during a 15 year period. Total S deposition decreased from 5 to 1.1 g m?2 yr?1 between 1995 and 2009, whereas bulk N deposition did not change. Over the same period, C and N pools in the Oa horizon declined by 116 g C and 4.2 g N m?2 yr?1, a total decrease of 47% and 42%, respectively. This loss of C and N probably originated from organic matter (OM) that had accumulated during the period of high acid deposition when litter decomposition was suppressed. The loss of OM from the Oa horizon coincided with a substantial leaching (1.3 g N m?2 yr?1 at 90 cm) in the 1990s to almost no leaching (<0.02 g N m?2 yr?1) since 2006. Forest floor net N mineralization also decreased. This had consequences for spruce needle N concentration (from 17.1 to 11.4 mg kg?1 in current needles), an increase in litterfall C/N ratio (from 51 to 63), and a significant increase in the Oi + Oe horizon C/N ratio (from 23.4 to 27.3) between 1994 and 2009/2010. Higher forest growth and lower canopy defoliation was observed in the 2000s compared to the 1990s. Our results demonstrate that reducing S deposition has had a profound impact on forest organic matter cycling, leading to a reversal of historic ecosystem N enrichment, cessation of nitrate leaching, and a major loss of accumulated organic soil C and N stocks. These results have major implications for our understanding of the controls on both N saturation and C sequestration in forests, and other ecosystems, subjected to current or historic S deposition.  相似文献   

6.
Anthropogenic nitrogen deposition has shifted many ecosystems from nitrogen (N) limitation to phosphorus (P) limitation. Although well documented in plants, no study to date has explored whether N deposition exacerbates P limitation at higher trophic levels, or focused on the effects of induced plant P limitation on trophic interactions. Insect herbivores exhibit strict N : P homeostasis, and should therefore be very sensitive to variations in plant N : P stoichiometry and prone to experiencing deposition‐induced P limitation. In the current study, we investigated the effects of N deposition and P availability on a plant‐herbivorous insect system. Using common milkweed (Asclepias syriaca) and two of its specialist herbivores, the monarch caterpillar (Danaus plexippus) and milkweed aphid (Aphis asclepiadis) as our study system, we found that experimental N deposition caused P limitation in milkweed plants, but not in either insect species. However, the mechanisms for the lack of P limitation were different for each insect species. The body tissues of A. asclepiadis always exhibited higher N : P ratios than that of the host plant, suggesting that the N demand of this species exceeds P demand, even under high N deposition levels. For D. plexippus, P addition increased the production of latex, which is an important defense negatively affecting D. plexippus growth rate. As a result, we illustrate that P limitation of herbivores is not an inevitable consequence of anthropogenic N deposition in terrestrial systems. Rather, species‐specific demands for nutrients and the defensive responses of plants combine to determine the responses of herbivores to P availability under N deposition.  相似文献   

7.
    
Protein tyrosine (Tyr) nitration is a post‐translational modification yielding 3‐nitrotyrosine (NO2–Tyr). Formation of NO2–Tyr is generally considered as a marker of nitro‐oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2–Tyr in Lb. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2–Tyr25 and NO2–Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving and were found to decrease during senescence. This demonstrates formation of nitric oxide (˙NO) and by alternative means to nitrate reductase, probably via a ˙NO synthase‐like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lb revealed that Tyr nitration requires  + H2O2 and that peroxynitrite is not an efficient inducer of nitration, probably because Lb isomerizes it to . Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2–Tyr in Lb is a consequence of active metabolism in functional nodules, where Lb may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis.  相似文献   

8.
9.
    
The objectives of this study were to identify which method and period of evaluation of angular leaf spot (ALS) of common bean, caused by the fungal pathogen Pseudocercospora griseola, allow better discrimination among common bean lines derived from seven cycles of recurrent selection for resistance to this pathogen. For that reason, 35 lines of the first seven cycles of the programme were assessed for disease severity on leaves and pods using a rating scale. For leaves, the methods used were severity in field plots (SF), severity in sampled leaflets (SS) and percentage of the sampled leaf area with symptoms (%LAS). Leaf assessments were performed at 7, 14, 21, 28, 33 and 41 days after flowering (DAF), and area under the disease progress curve (AUDPC) was calculated. On pods, severity was evaluated at 41 DAF. It was observed that the SF using a rating scale is the most efficient method for selection of resistant lines, and the best time period for evaluating the disease is around 33 DAF.  相似文献   

10.
马进鹏  庞丹波  陈林  万红云  李学斌 《生态学报》2023,43(11):4722-4733
土壤呼吸作为陆地生态系统碳循环的重要组成部分,对研究干旱半干旱区荒漠草原碳平衡具有重要意义。选取荒漠草原4种典型植物枯落物进行裂区实验,设置氮、水添加实验处理,探讨不同的枯落物地表,短期氮、水处理对荒漠草原土壤呼吸的影响。结果表明,土壤呼吸日动态呈单峰曲线,最大值出现在10:00—12:00。相同处理间不同枯落物地表和相同枯落物地表不同处理间土壤呼吸在白天和夜间均有差异(P<0.05)。枯落物对土壤呼吸贡献表明,短期不做任何处理的枯落物对土壤呼吸的贡献最大,贡献率高达68%—89%。多因素方差分析显示,氮及氮和水交互作用对土壤呼吸的影响显著。呼吸在降水处理间存在显著差异(P<0.05),表现为减雨(P3)>增雨(P2)>正常(P1);呼吸在氮素处理间存在极显著差异(P<0.001),表现为添氮(N1)>不添氮(N0)。土壤呼吸与土壤温度、土壤湿度拟合发现,短期的氮、水处理下土壤温度与土壤呼吸显著相关(P<0.05),可解释呼吸变化的50.3%—69.9%;土壤湿度对呼吸影响不显著(P>0.05),温度、湿度的交互作用对土壤呼吸的影响显著(...  相似文献   

11.
12.
    
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   

13.
14.
    
Solar ultraviolet (UV) radiation‐induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB‐induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR‐1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB‐induced reactive oxygen species and lactate dehydrogenase. Dose‐dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase‐1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5‐Methoxyindole‐2‐carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle‐associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal‐regulated kinase, Jun N‐terminal kinase and p38, which consequently reduced phosphorylated c‐fos and c‐jun. Our results suggest that TV is a potential botanical agent for use against UV radiation‐induced oxidative stress mediated skin damages.  相似文献   

15.
  总被引:1,自引:0,他引:1  
Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant–microbe–mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant‐derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial‐derived C in the silt‐clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above‐ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0–5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata‐invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co‐metabolism of pine‐derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems.  相似文献   

17.
Liao C  Peng R  Luo Y  Zhou X  Wu X  Fang C  Chen J  Li B 《The New phytologist》2008,177(3):706-714
Plant invasion potentially alters ecosystem carbon (C) and nitrogen (N) cycles. However, the overall direction and magnitude of such alterations are poorly quantified. Here, 94 experimental studies were synthesized, using a meta-analysis approach, to quantify the changes of 20 variables associated with C and N cycles, including their pools, fluxes, and other related parameters in response to plant invasion. Pool variables showed significant changes in invaded ecosystems relative to native ecosystems, ranging from a 5% increase in root carbon stock to a 133% increase in shoot C stock. Flux variables, such as above-ground net primary production and litter decomposition, increased by 50-120% in invaded ecosystems, compared with native ones. Plant N concentration, soil NH+4 and NO-3 concentrations were 40, 30 and 17% higher in invaded than in native ecosystems, respectively. Increases in plant production and soil N availability indicate that there was positive feedback between plant invasion and C and N cycles in invaded ecosystems. Invasions by woody and N-fixing plants tended to have greater impacts on C and N cycles than those by herbaceous and nonN-fixing plants, respectively. The responses to plant invasion are not different among forests, grasslands, and wetlands. All of these changes suggest that plant invasion profoundly influences ecosystem processes.  相似文献   

18.
19.
    
  1. Global climate change causes range shifts in many insects. Urban areas and south‐facing slopes may provide a warmer environment for newcomers adapted to warmer climatic conditions. The German wasp (Vespula germanica, Fabricius, 1793), which is native to central and southern Europe, has been expanding its range into Southern Finland since 2001.
  2. The association between the German wasp and its sister species, the common wasp (V. vulgaris Linnaeus, 1758), with urban areas was studied in three cities in Finland. In addition, the numbers of German wasp catches during 7 years on south‐ and north‐facing riverbank slopes in SW‐Finland were compared and the association with spring temperature was analysed.
  3. The newcomer German wasp seemed to be associated with urban areas, while its sister species was associated with rural areas in two of the cities and urban areas in one of the three studied cities. In addition, the German wasp was more common in south‐facing than in north‐facing slopes of the river valley, while the direction of the slope was less important for the common wasp. Finally, the abundance of the German wasp but not the common wasp has increased with an increase in spring temperature.
  4. The preference of the German wasp for urban habitats and south‐facing slopes in Finland may be because those habitats are usually warmer than their surroundings and the species is well adapted for urban environments. These environments can act as stepping stones in species’ range shifts driven by climate change.
  相似文献   

20.
    
We present a global assessment of the relationships between the short‐wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle‐leaf forests (ENF); evergreen broad‐leaf forests (EBF); deciduous needle‐leaf forests (DNF); deciduous broad‐leaf forests (DBF); and mixed‐forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short‐wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad‐leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号