首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The southern Australian marine macroalgal flora has the highest levels of species richness and endemism of any regional macroalgal flora in the world. Analyses of species composition and distributions for the southern Australian flora have identified four different floristic elements, namely the southern Australian endemic element, the widely distributed temperate element, the tropical element and a cold water element. Within the southern Australian endemic element, four species distribution patterns are apparent, thought to largely result from the Jurassic to Oligocene fragmentation of East Gondwana, the subsequent migration of Tethyan ancestors from the west Australian coast and the later invasion of high latitude Pacific species. Climatic deterioration from the late Eocene to the present is thought responsible for the replacement of the previous tropical south coast flora by an endemic temperate flora which has subsequently diversified in response to fluctuating environmental conditions, abundant rocky substrata and substantial habitat heterogeneity. High levels of endemism are attributed to Australia's long isolation and maintained, as is the high species richness, by the lack of recent mass extinction events. The warm water Leeuwin Current has had profound influence in the region since the Eocene, flowing to disperse macroalgal species onto the south coast as well as ameliorating the local environment. It is now evident that the high species richness and endemism we now observe in the southern Australian marine macroalgal flora can be attributed to a complex interaction of biogeographical, ecological and phylogenetic processes over the last 160 million years.  相似文献   

4.
Species distribution models (SDMs) are commonly used to project future changes in the geographic ranges of species, to estimate extinction rates and to plan biodiversity conservation. However, these models can produce a range of results depending on how they are parameterized, and over‐reliance on a single model may lead to overconfidence in maps of future distributions. The choice of predictor variable can have a greater influence on projected future habitat than the range of climate models used. We demonstrate this in the case of the Ptunarra Brown Butterfly, a species listed as vulnerable in Tasmania, Australia. We use the Maxent model to develop future projections for this species based on three variable sets; all 35 commonly used so‐called ‘bioclimatic’ variables, a subset of these based on expert knowledge, and a set of monthly climate variables relevant to the species’ primary activity period. We used a dynamically downscaled regional climate model based on three global climate models. Depending on the choice of variable set, the species is projected either to experience very little contraction of habitat or to come close to extinction by the end of the century due to lack of suitable climate. The different conclusions could have important consequences for conservation planning and management, including the perceived viability of habitat restoration. The output of SDMs should therefore be used to define the range of possible trajectories a species may be on, and ongoing monitoring used to inform management as changes occur.  相似文献   

5.
    
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   

6.
    
Summary Governments across Australia have long been investing in revegetation in an effort to restore biodiversity and, more recently, mitigate climate change. However, no readily available methods have been described to assist project leaders identify species and provenance material likely to be sustainable under the changing climatic conditions of coming decades. Focussing particularly on trees, as trees are important for biosequestration as well as for providing habitat for other native species, Paper 1 of this two part series briefly reviews species distribution models and growth simulation models that could provide the scientific underpinning to improve and refine selection processes. While these previous scientific studies provide useful insights into how trees may respond to climate change, it is concluded that a readily accessible and easy‐to‐use approach is required to consider the potential adaptability of the many trees, shrubs and ground cover species that may be needed for biodiverse plantings. In Part 2 of this paper, the Atlas of Living Australia is used to provide preliminary information to assist species selection by assessing the climatic range of individual species based on their current distributions and, where available, cultivated locations. While using the Atlas can assist current selections, ways are outlined in Part 2 in which more reliable selections for changing climatic conditions could be made, building on the methods described here.  相似文献   

7.
鲨鱼在气候变化和人类活动等因素的影响下面临着种群衰退的风险,开展鲨鱼保护优先区研究是鲨鱼保护行动的重要工作.将气候速度引入鲨鱼保护优先区的识别过程,旨在阐明中国周边海域鲨鱼现状保护成效和保护空缺,并预测气候速度影响下的鲨鱼保护优先区空间格局及其变化趋势.以集成物种分布模型模拟的146种鲨鱼栖息地作为保护对象,以2015年至2100年两种气候变化情景下的气候速度作为保护的机会成本,基于系统保护规划理论模拟现状和未来情景下的鲨鱼保护优先区选址方案.研究结果表明:(1)长江口以南至台湾海峡和北部湾近岸海域为鲨鱼多样性分布的主要区域,台湾海峡区域亦为珍稀濒危物种的重要分布区;(2)在两种气候情景下,南海中南部将面临较高的气候变化风险,而长江口以南至珠江口的近岸海域气候速度均相对较低,提示了这些区域或能成为气候变化影响下的生物避难所;(3)现有保护区仅保护了1.33%的海域和不到4%的鲨鱼物种,尚存在较大的保护空缺.当保护海域比例提升至10%时,可覆盖绝大多数鲨鱼物种.而当比例提升至30%时,珍稀濒危物种的栖息地将得到有效保护;(4)气候变化影响下保护优先区选址将发生不同程度的变化,尤其是在中国南海区域,如在保护规划时兼顾气候速度,可在满足相似保护目标的前提下减少保护优先区内25%以上的气候压力,以使其具有较强的应对气候变化潜力。  相似文献   

8.
To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology.  相似文献   

9.
10.
    
Climate warming has been proposed as the main cause of the recent range shifts seen in many species. Although species' thermal tolerances are thought to play a key role in determining responses to climate change, especially in ectotherms, empirical evidence is still limited. We investigate the connection between species' thermal tolerances, elevational range and shifts in the lower elevational limit of dung beetle species (Coleoptera, Aphodiidea) in an upland region in the northwest of England. We measured thermal tolerances in the laboratory, and used current and historical distribution data to test specific hypotheses about the area's three dominant species, particularly the species most likely to suffer from warming: Agollinus lapponum. We found marked differences between species in their minimum and maximum thermal tolerance and in their elevational range and patterns of abundance. Overall, differences in thermal limits among species matched the abundance patterns along the elevation gradient expected if distributions were constrained by climate. Agollinus lapponum abundance increased with elevation and this species showed lower maximum and minimum thermal limits than Acrossus depressus, for which abundance declined with elevation. Consistent with lower tolerance to high temperature, we recorded an uphill retreat of the low elevation limit of A. lapponum (177 m over 57 yr) in line with the increase in summer temperature observed in the region over the same period. Moreover, this species has been replaced at low and mid‐elevations by the other two warm‐tolerant species (A. depressus and Agrilinus ater). Our results provide empirical evidence that species' thermal tolerance constrains elevational ranges and contributes to explain the observed responses to climate warming. A mechanistic understanding of how climate change directly affects species, such as the one presented here, will provide a robust base to inform predictions of how individual species and whole assemblages may change in the future.  相似文献   

11.
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross‐validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland‐dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross‐validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross‐validation results were correlated with extrapolation results, the use of cross‐validation performance metrics to guide modeling choices where knowledge is limited was supported.  相似文献   

12.
13.
    
Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade‐off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming.  相似文献   

14.
    
Species distribution models (SDMs) correlate species occurrences with environmental predictors, and can be used to forecast distributions under future climates. SDMs have been criticized for not explicitly including the physiological processes underlying the species response to the environment. Recently, new methods have been suggested to combine SDMs with physiological estimates of performance (physiology-SDMs). In this study, we compare SDM and physiology-SDM predictions for select marine species in the Mediterranean Sea, a region subjected to exceptionally rapid climate change. We focused on six species and created physiology-SDMs that incorporate physiological thermal performance curves from experimental data with species occurrence records. We then contrasted projections of SDMs and physiology-SDMs under future climate (year 2100) for the entire Mediterranean Sea, and particularly the ‘warm’ trailing edge in the Levant region. Across the Mediterranean, we found cross-validation model performance to be similar for regular SDMs and physiology-SDMs. However, we also show that for around half the species the physiology-SDMs substantially outperform regular SDM in the warm Levant. Moreover, for all species the uncertainty associated with the coefficients estimated from the physiology-SDMs were much lower than in the regular SDMs. Under future climate, we find that both SDMs and physiology-SDMs showed similar patterns, with species predicted to shift their distribution north-west in accordance with warming sea temperatures. However, for the physiology-SDMs predicted distributional changes are more moderate than those predicted by regular SDMs. We conclude, that while physiology-SDM predictions generally agree with the regular SDMs, incorporation of the physiological data led to less extreme range shift forecasts. The results suggest that climate-induced range shifts may be less drastic than previously predicted, and thus most species are unlikely to completely disappear with warming climate. Taken together, the findings emphasize that physiological experimental data can provide valuable supplemental information to predict range shifts of marine species.  相似文献   

15.
应用最大熵(MaxEnt)模型,基于230条分布记录及33个气候因子数据,模拟全新世中期(约6000年前)、当前时期(1950—2000年)和未来(2050s、2070s)气候条件下,红花龙胆西南地区的潜在分布范围;结合多元统计分析和ArcGIS空间分析,筛选影响物种分布的关键气候因子,探讨不同分布区对气候变化的敏感性.结果表明: 模型训练集AUC值为0.942,验证集AUC值为0.849,表明模型预测的准确性较高.5个气候因子(7月最高气温、8月最低气温、昼夜温差与年温差比值、7月最低气温和6月最低气温)对模型贡献最大,累计贡献率达59.9%.随未来气候变化,红花龙胆适生区将呈现先减少后增加的变化趋势,在RCP 8.5情景下,至2070s阶段,西南地区红花龙胆适宜生境总面积与当前气候条件相比减少15.0%,但云南境内适生区和高适生区面积较当前分别增加32.8%和32.7%.红花龙胆适宜生长于温暖、湿润的气候条件下,气候变暖明显影响着适宜生境的面积和范围,尤其低海拔分布区对气候变化较敏感,适宜生境退缩严重,而高海拔地区由于降水、温度条件的改善适宜生境有所增加.随着全球气候的变化,未来西南地区红花龙胆主要分布区可能向西迁移,并向更高海拔扩张.  相似文献   

16.
The objectives of this work were to examine the past, current and potential influence of global climate change on the spatial distribution of some commercially exploited fish and to evaluate a recently proposed new ecological niche model (ENM) called nonparametric probabilistic ecological niche model (NPPEN). This new technique is based on a modified version of the test called Multiple Response Permutation Procedure (MRPP) using the generalized Mahalanobis distance. The technique was applied in the extratropical regions of the North Atlantic Ocean on eight commercially exploited fish species using three environmental parameters (sea surface temperature, bathymetry and sea surface salinity). The numerical procedure and the model allowed a better characterization of the niche (sensu Hutchinson) and an improved modelling of the spatial distribution of the species. Furthermore, the technique appeared to be robust to incomplete or bimodal training sets. Despite some potential limitations related to the choice of the climatic scenarios (A2 and B2), the type of physical model (ECHAM 4) and the absence of consideration of biotic interactions, modelled changes in species distribution explained some current observed shifts in dominance that occurred in the North Atlantic sector, and particularly in the North Sea. Although projected changes suggest a poleward movement of species, our results indicate that some species may not be able to track their climatic envelope and that climate change may have a prominent influence on fish distribution during this century. The phenomenon is likely to trigger locally major changes in the dominance of species with likely implications for socio‐economical systems. In this way, ENMs might provide a new management tool against which changes in the resource might be better anticipated.  相似文献   

17.
18.
    
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

19.
Oceanic rafting is thought to play a fundamental role in assembling the biological communities of isolated coastal ecosystems. Direct observations of this key ecological and evolutionary process are, however, critically lacking. The importance of macroalgal rafting as a dispersal mechanism has remained uncertain, largely owing to lack of knowledge about the capacity of fauna to survive long voyages at sea and successfully make landfall and establish. Here, we directly document the rafting of a diverse assemblage of intertidal organisms across several hundred kilometres of open ocean, from the subantarctic to mainland New Zealand. Multispecies analyses using phylogeographic and ecological data indicate that 10 epifaunal invertebrate species rafted on six large bull kelp specimens for several weeks from the subantarctic Auckland and/or Snares Islands to the Otago coast of New Zealand, a minimum distance of some 400–600 km. These genetic data are the first to demonstrate that passive rafting can enable simultaneous trans-oceanic transport and landfall of numerous coastal taxa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号