首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Interactions between trees and grasses that influence leaf area index (LAI) have important consequences for savanna ecosystem processes through their controls on water, carbon, and energy fluxes as well as fire regimes. We measured LAI, of the groundlayer (herbaceous and woody plants <1-m tall) and shrub and tree layer (woody plants >1-m tall), in the Brazilian cerrado over a range of tree densities from open shrub savanna to closed woodland through the annual cycle. During the dry season, soil water potential was strongly and positively correlated with grass LAI, and less strongly with tree and shrub LAI. By the end of the dry season, LAI of grasses, groundlayer dicots and trees declined to 28, 60, and 68% of mean wet-season values, respectively. We compared the data to remotely sensed vegetation indices, finding that field measurements were more strongly correlated to the enhanced vegetation index (EVI, r 2=0.71) than to the normalized difference vegetation index (NDVI, r 2=0.49). Although the latter has been more widely used in quantifying leaf dynamics of tropical savannas, EVI appears better suited for this purpose. Our ground-based measurements demonstrate that groundlayer LAI declines with increasing tree density across sites, with savanna grasses being excluded at a tree LAI of approximately 3.3. LAI averaged 4.2 in nearby gallery (riparian) forest, so savanna grasses were absent, thereby greatly reducing fire risk and permitting survival of fire-sensitive forest tree species. Although edaphic conditions may partly explain the larger tree LAI of forests, relative to savanna, biological differences between savanna and forest tree species play an important role. Overall, forest tree species had 48% greater LAI than congeneric savanna trees under similar growing conditions. Savanna and forest species play distinct roles in the structure and dynamics of savanna–forest boundaries, contributing to the differences in fire regimes, microclimate, and nutrient cycling between savanna and forest ecosystems.  相似文献   

2.
High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near‐zero sink of atmospheric CO2 (NEE: ?0.3 ± 13.5 g C m?2). A nearby meadow wetland accumulated over 300 times more carbon (NEE: ?79.3 ± 20.0 g C m?2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on‐site was low (mean: 0.120–0.157) and similar to satellite measurements (mean: 0.155–0.163). However, weak plant growth resulted in poor satellite NDVI–NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate‐related changes to productivity on polar semideserts may be restricted.  相似文献   

3.
The spatial and temporal patterns in CO2 flux for the Kuparuk River Basin, a 9200‐km2 watershed located in NE Alaska were estimated using the Regional Arctic CO2 Exchange Simulator (RACES) for the 1994–1995 growing seasons. RACES uses non‐linear models and a Geographical Information System database (GIS) consisting of the normalized difference vegetation index (NDVI) and dynamic temperature and radiation maps. The spatial and temporal patterns in the NDVI during both growing seasons suggest that ecosystem development occurred 2–4 weeks earlier and was relatively more rapid in the southern portion of the Kuparuk River Basin. Rates of gross primary production (GPP) and whole‐ecosystem respiration (R) were 2–4 fold higher in the southern basin than along the arctic coastal plain depending on time of year. The higher rate of GPP estimated for the southern basin was primarily due to higher NDVI values, while the higher R estimated for the southern basin was due in part to higher temperature and the NDVI. While GPP and R showed strong latitudinal trends, spatial and temporal trends in net ecosystem CO2 exchange (NEE) were much more variable. Thus, while spatial trends in carbon gain (GPP) and loss (R) were highly correlated, small spatial and temporal differences in these large fluxes (GPP and/or R) lead to corresponding large spatial variations in the NEE.  相似文献   

4.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

5.
Woody vegetation in global tropical drylands is of significant importance for both the interannual variability of the carbon cycle and local livelihoods. Satellite observations over the past decades provide a unique way to assess the vegetation long‐term dynamics across biomes worldwide. Yet, the actual changes in the woody vegetation are always hidden by interannual fluctuations of the leaf density, because the most widely used remote sensing data are primarily related to the photosynthetically active vegetation components. Here, we quantify the temporal trends of the nonphotosynthetic woody components (i.e., stems and branches) in global tropical drylands during 2000–2012 using the vegetation optical depth (VOD), retrieved from passive microwave observations. This is achieved by a novel method focusing on the dry season period to minimize the influence of herbaceous vegetation and using MODerate resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to remove the interannual fluctuations of the woody leaf component. We revealed significant trends (< 0.05) in the woody component (VODwood) in 35% of the areas characterized by a nonsignificant trend in the leaf component (VODleaf modeled from NDVI), indicating pronounced gradual growth/decline in woody vegetation not captured by traditional assessments. The method is validated using a unique record of ground measurements from the semiarid Sahel and shows a strong agreement between changes in VODwood and changes in ground observed woody cover (r2 = 0.78). Reliability of the obtained woody component trends is also supported by a review of relevant literatures for eight hot spot regions of change. The proposed approach is expected to contribute to an improved assessment of, for example, changes in dryland carbon pools.  相似文献   

6.
Arid environments represent 30% of the global terrestrial surface, but are largely under‐represented in studies of ecosystem carbon flux. Less than 2% of all FLUXNET eddy covariance sites exist in a hot desert climate. Long‐term datasets of these regions are vital for capturing the seasonal and interannual variability that occur due to episodic precipitation events and climate change, which drive fluctuations in soil moisture and temperature patterns. The objectives of this study were to determine the meteorological variables that drive carbon flux on diel, seasonal, and annual scales and to determine how precipitation events control annual net ecosystem exchange (NEE). Patterns of NEE from 2002 to 2008 were investigated, providing a record with multiple replicates of seasons and conditions. Precipitation was extremely variable (55–339 mm) during the study period, and reduced precipitation in later years (2004–2008) appears to have resulted in annual moderate to large carbon sources (62–258 g C m?2 yr?1) in contrast to the previously reported sink (2002–2003). Variations in photosynthetically active radiation were found to principally drive variations in carbon uptake during the wet growing season while increased soil temperatures at a 5 cm depth stimulated carbon loss during the dry dormant season. Monthly NEE was primarily driven by soil moisture at a 5 cm depth, and years with a higher magnitude of precipitation events showed a longer growing season with annual net carbon uptake, whereas years with lower magnitude had drier soils and displayed short growing seasons with annual net carbon loss. Increased precipitation frequency was associated with increased annual NEE, which may be a function of increased microbial respiration to more small precipitation events. Annual precipitation frequency and magnitude were found to have effects on the interannual variability of NEE for up to 2 years.  相似文献   

7.
Above forest canopies, eddy covariance (EC) measurements of mass (CO2, H2O vapor) and energy exchange, assumed to represent ecosystem fluxes, are commonly made at one point in the roughness sublayer (RSL). A spatial variability experiment, in which EC measurements were made from six towers within the RSL in a uniform pine plantation, quantified large and dynamic spatial variation in fluxes. The spatial coefficient of variation (CV) of the scalar fluxes decreased with increasing integration time, stabilizing at a minimum that was independent of further lengthening the averaging period (hereafter a ‘stable minimum’). For all three fluxes, the stable minimum (CV=9–11%) was reached at averaging times (τp) of 6–7 h during daytime, but higher stable minima (CV=46–158%) were reached at longer τp (>12 h) during nighttime. To the extent that decreasing CV of EC fluxes reflects reduction in micrometeorological sampling errors, half of the observed variability at τp=30 min is attributed to sampling errors. The remaining half (indicated by the stable minimum CV) is attributed to underlying variability in ecosystem structural properties, as determined by leaf area index, and perhaps associated ecosystem activity attributes. We further assessed the spatial variability estimates in the context of uncertainty in annual net ecosystem exchange (NEE). First, we adjusted annual NEE values obtained at our long‐term observation tower to account for the difference between this tower and the mean of all towers from this experiment; this increased NEE by up to 55 g C m?2 yr?1. Second, we combined uncertainty from gap filling and instrument error with uncertainty because of spatial variability, producing an estimate of variability in annual NEE ranging from 79 to 127 g C m?2 yr?1. This analysis demonstrated that even in such a uniform pine plantation, in some years spatial variability can contribute ~50% of the uncertainty in annual NEE estimates.  相似文献   

8.
Model parameterization and validation of earth–atmosphere interactions are generally performed using a single timescale (e.g., nearly instantaneous, daily, and annual), although both delayed responses and hysteretic effects have been widely recognized. The lack of consideration of these effects hampers our capability to represent them in empirical‐ or process‐based models. Here we explore, using an apple orchard ecosystem in the North of Italy as a simplified case study, how the considered timescale impacts the relative importance of the single environmental variables in explaining observed net ecosystem exchange (NEE) and evapotranspiration (ET). Using 6 years of eddy covariance and meteorological information as input data, we found a decay of the relative importance of the modeling capability of photosynthetically active radiation in explaining both NEE and ET moving from half‐hourly to seasonal timescale and an increase in the relative importance of air temperature (T) and VPD. Satellite NDVI, used as proxy of leaf development, added little improvement to overall modeling capability. Increasing the timescale, the number of variables needed for parameterization decreased (from 5 to 1), while the proportion of variance explained by the model increased (r2 from 0.56–0.78 to 0.85–0.90 for NEE and ET respectively). The wavelet coherence and the phase analyses showed that the two variables that increased their relative importance when the scale increased (T, VPD) were not in phase at the correlation peak of both ET and NEE. This phase shift in the time domain corresponds to a hysteretic response in the meteorological variables domain. This work confirms that the model parameterization should be performed using parameters calculated at the appropriate scale. It suggests that in managed ecosystems, where the interannual variability is minimized by the agronomic practices, the use of timescales large enough to include hysteretic and delayed responses reduces the number of required input variables and improves their explanatory capacity.  相似文献   

9.
马文婧  李英年  张法伟  韩琳 《生态学报》2023,43(3):1102-1112
青藏高原草甸草原是生态系统中重要的植被类型,准确评估高寒草甸草原生态系统碳源汇状况及碳储量变化尤为重要。基于涡度相关系统观测,分析了2009年至2016年8年期间青海湖北岸草甸草原环境因子以及碳通量的变化特征,运用结构方程模型(SEM)分析环境因子对总初级生产力(GPP)、净生态系统CO2交换量(NEE)、生态系统呼吸(Re)的调控机制。结果表明:2009—2016年8年NEE日均值在-2.02—0.88 gC m-2 d-1之间,5—9月NEE为负值,表现为碳吸收,雨热同期的6、7、8月是CO2净吸收最强的时期,平均每月吸收CO2 39.85 gC m-2 month-1,NEE负值日数约占全年的48%,10月—翌年4月为正值,表现为碳释放,初春3月和秋末11月是CO2净释放最强的时期;Re日均值为1.69 gC m-2 d-1,受季节温度的影响,呈夏季强,冬季弱的态...  相似文献   

10.
Cultivation of bioenergy crops has been suggested as a promising option for reduction of greenhouse gas (GHG) emissions from arable organic soils (Histosols). Here, we report the annual net ecosystem exchange (NEE) fluxes of CO2 as measured with a dynamic closed chamber method at a drained fen peatland grown with reed canary grass (RCG) and spring barley (SB) in a plot experiment (= 3 for each cropping system). The CO2 flux was partitioned into gross photosynthesis (GP) and ecosystem respiration (RE). For the data analysis, simple yet useful GP and RE models were developed which introduce plot‐scale ratio vegetation index as an active vegetation proxy. The GP model captures the effect of temperature and vegetation status, and the RE model estimates the proportion of foliar biomass dependent respiration (Rfb) in the total RE. Annual RE was 1887 ± 7 (mean ± standard error, = 3) and 1288 ± 19 g CO2‐C m?2 in RCG and SB plots, respectively, with Rfb accounting for 32 and 22% respectively. Total estimated annual GP was ?1818 ± 42 and ?1329 ± 66 g CO2‐C m?2 in RCG and SB plots leading to a NEE of 69 ± 36 g CO2‐C m?2 yr?1 in RCG plots (i.e., a weak net source) and ?41 ± 47 g CO2‐C m?2 yr?1 in SB plots (i.e., a weak net sink). Standard errors related to spatial variation were small (as shown above), but more significant uncertainties were related to the modelling approach for establishment of annual budgets. In conclusion, the bioenergy cropping system was not more favourable than the food cropping system when looking at the atmospheric CO2 emissions during cultivation. However, in a broader GHG life‐cycle perspective, the lower fertilizer N input and the higher biomass yield in bioenergy cropping systems could be beneficial.  相似文献   

11.
Niu S  Wu M  Han Y  Xia J  Li L  Wan S 《The New phytologist》2008,177(1):209-219
Global warming and a changing precipitation regime could have a profound impact on ecosystem carbon fluxes, especially in arid and semiarid grasslands where water is limited. A field experiment manipulating temperature and precipitation has been conducted in a temperate steppe in northern China since 2005. A paired, nested experimental design was used, with increased precipitation as the primary factor and warming simulated by infrared radiators as the secondary factor. The results for the first 2 yr showed that gross ecosystem productivity (GEP) was higher than ecosystem respiration, leading to net C sink (measured by net ecosystem CO(2) exchange, NEE) over the growing season in the study site. The interannual variation of NEE resulted from the difference in mean annual precipitation. Experimental warming reduced GEP and NEE, whereas increased precipitation stimulated ecosystem C and water fluxes in both years. Increased precipitation also alleviated the negative effect of experimental warming on NEE. The results demonstrate that water availability plays a dominant role in regulating ecosystem C and water fluxes and their responses to climatic change in the temperate steppe of northern China.  相似文献   

12.
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site‐years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 – 1000 mm in annual precipitation and records of 4–9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site‐level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis–ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site‐level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long‐term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100‐mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm?2 yr?1. Most of the unexplained NEP variability was related to persistent, site‐specific function, suggesting prioritization of research on slow‐changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site‐level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.  相似文献   

13.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

14.
Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C m?2 yr?1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol m?2 s?1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of ?2.3 μmol m?2 s?1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day‐time NECB just below 1000 μmol m?2 s?1. The analyses of the diurnal and seasonal data and preliminary geological and gas‐geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2‐rich geofluid circulation.  相似文献   

15.
Water vapour and CO2 exchange were measured in moss-dominated vegetation using a gas analyser and a 0.3 x 0.3 m chamber at 17 sites near Abisko, Northern Sweden and 21 sites near Longyearbyen, Svalbard, to quantify the contribution of mosses to ecosystem level fluxes. With the help of a simple light-response model, we showed that the moss contribution to ecosystem carbon uptake varied between 14 and 96%, with an average contribution of around 60%. This moss contribution could be related to the normalized difference vegetation index (NDVI) of the vegetation and the leaf area index (LAI) of the vascular plants. NDVI was a good predictor of gross primary production (GPP) of mosses and of the whole ecosystem, across different moss species, vegetation types and two different latitudes. NDVI was also correlated with thickness of the active green moss layer. Mosses played an important role in water exchange. They are expected to be most important to gas exchange during spring when leaves are not fully developed.  相似文献   

16.
Tower‐based eddy covariance measurements of forest‐atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year‐to‐year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem respiration, Reco, and gross photosynthesis, Pgross) into two main effects: variation in environmental drivers (air and soil temperature, solar radiation, vapor pressure deficit, and soil water content) and variation in the biotic response to this environmental forcing (as characterized by the model parameters). The model is applied to a 9‐year data set from the Howland AmeriFlux site, a spruce‐dominated forest in Maine, USA. Gap‐filled flux measurements at this site indicate that the forest has been sequestering, on average, 190 g C m−2 yr−1, with a range from 130 to 270 g C m−2 yr−1. Our fitted model predicts somewhat more uptake (mean 270 g C m−2 yr−1), but interannual variation is similar, and wavelet variance analyses indicate good agreement between tower measurements and model predictions across a wide range of timescales (hours to years). Associated with the interannual variation in NEE are clear differences among years in model parameters for both Reco and Pgross. Analysis of model predictions suggests that, at the annual time step, about 40% of the variance in modeled NEE can be attributed to variation in environmental drivers, and 55% to variation in the biotic response to this forcing. As model predictions are aggregated at longer timescales (from individual days to months to calendar year), variation in environmental drivers becomes progressively less important, and variation in the biotic response becomes progressively more important, in determining the modeled flux. There is a strong negative correlation between modeled annual Pgross and Reco (r=−0.93, P≤0.001); two possible explanations for this correlation are discussed. The correlation promotes homeostasis of NEE: the interannual variation in modeled NEE is substantially less than that for either Pgross or Reco  相似文献   

17.
The lack of long-term records of productivity is a critical limitation to the study of ecosystem dynamics. Annual rings, a measure of growth in woody species, are a useful tool to document ecosystem dynamics. Time series of the Normalized Difference Vegetation Index (NDVI) provide estimates of ecosystem productivity through satellite-derived data on the fraction of photosynthetic active radiation absorbed by vegetation. In the Patagonian steppes, we relate changes in NDVI to interannual variations in the radial growth of the shrub Anarthrophyllum rigidum. A widely distributed network of 15 ring-width chronologies of A. rigidum was used to estimate changes in NDVI across the Patagonia steppe (35°–50°S). In most sites, interannual variations in shrub growth and NDVI are regulated by winter precipitation. The water accumulated in the soil during winter is used by A. rigidum during the growing season, concurrent with the maximum NDVI values. At 10 from the 15 selected sites, variations in the radial growth of A. rigidum explained between 23 and 62% of the total variance in seasonal NDVI, suggesting that the A. rigidum growth at some sites provides good estimates of productivity in the Patagonian shrubby steppes during the growing season. However, we were unable to determine clear relationships between radial growth and NDVI at high-elevation mountainous sites or where intensive grazing by sheep masked the effect of climate variability on shrub growth. We conclude that dendrochronological methods can complement other estimates to reconstruct variations of productivity, supplementing and extending the few short records available in the Patagonian steppe.  相似文献   

18.
Global‐scale studies suggest that dryland ecosystems dominate an increasing trend in the magnitude and interannual variability of the land CO2 sink. However, such analyses are poorly constrained by measured CO2 exchange in drylands. Here we address this observation gap with eddy covariance data from 25 sites in the water‐limited Southwest region of North America with observed ranges in annual precipitation of 100–1000 mm, annual temperatures of 2–25°C, and records of 3–10 years (150 site‐years in total). Annual fluxes were integrated using site‐specific ecohydrologic years to group precipitation with resulting ecosystem exchanges. We found a wide range of carbon sink/source function, with mean annual net ecosystem production (NEP) varying from ‐350 to +330 gCm?2 across sites with diverse vegetation types, contrasting with the more constant sink typically measured in mesic ecosystems. In this region, only forest‐dominated sites were consistent carbon sinks. Interannual variability of NEP, gross ecosystem production (GEP), and ecosystem respiration (Reco) was larger than for mesic regions, and half the sites switched between functioning as C sinks/C sources in wet/dry years. The sites demonstrated coherent responses of GEP and NEP to anomalies in annual evapotranspiration (ET), used here as a proxy for annually available water after hydrologic losses. Notably, GEP and Reco were negatively related to temperature, both interannually within site and spatially across sites, in contrast to positive temperature effects commonly reported for mesic ecosystems. Models based on MODIS satellite observations matched the cross‐site spatial pattern in mean annual GEP but consistently underestimated mean annual ET by ~50%. Importantly, the MODIS‐based models captured only 20–30% of interannual variation magnitude. These results suggest the contribution of this dryland region to variability of regional to global CO2 exchange may be up to 3–5 times larger than current estimates.  相似文献   

19.
Aim Applying water‐energy dynamics and heterogeneity theory to explain species richness via remote sensing could allow for the regional characterization and monitoring of vegetation community assemblages and their environment. We assess the relationship of multi‐temporal normalized difference vegetation index (NDVI) to plant species richness in vegetation communities. Location California, USA. Methods Sub‐regions containing species inventories for chaparral, coastal sage scrub, foothill woodland, and yellow pine forest communities were intersected with a vegetation community map and an AVHRR NDVI time series for 1990, 1991, 1992, 1995 and 1996. Principal components analysis reduced the AVHRR data to three variables representing the sum and temporal trajectories of NDVI within each community. A fourth variable representing heterogeneity was tested using the standard deviation of the first component. Quadratic forms of these variables were also tested. Species richness was analysed by stepwise regression. Results Chaparral, coastal sage scrub, and yellow pine forest had the best relationships between species richness and NDVI. Richness of chaparral was related to NDVI heterogeneity and spring greenness (r2 varied between 0.26 and 0.62 depending on year of NDVI data). Richness of coastal sage scrub was nonlinearly related to annual NDVI and heterogeneity (r2 0.63–0.81), with peak richness at intermediate values. Foothill woodland richness was related to heterogeneity in a monotonic curvilinear fashion (r2 0.28–0.35). Yellow pine forest richness was negatively related to spring greenness and positively related to heterogeneity (r2 0.40–0.46). Main Conclusions While NDVI's relationship to species richness varied, the selection of NDVI variables was generally consistent across years and indicated that spatial variability in NDVI may reflect important patterns in water‐energy use that affect plant species richness. The principal component axis that should correspond closely with annual mean NPP showed a less prominent role. We conclude that plant species richness for coarse vegetation associations can be characterized and monitored at a regional scale and over long periods of time using relatively coarse resolution NDVI data.  相似文献   

20.
Eddy‐covariance measurements of net ecosystem carbon exchange (NEE) were carried out above a grazed Mediterranean C3/C4 grassland in southern Portugal, during two hydrological years, 2004–2005 and 2005–2006, of contrasting rainfall. Here, we examine the seasonal and interannual variation in NEE and its major components, gross primary production (GPP) and ecosystem respiration (Reco), in terms of the relevant biophysical controls. The first hydrological year was dry, with total precipitation 45% below the long‐term mean (669 mm) and the second was normal, with total precipitation only 12% above the long‐term mean. The drought conditions during the winter and early spring of the dry year limited grass production and the leaf area index (LAI) was very low. Hence, during the peak of the growth period, the maximum daily rate of NEE and the light‐use and water‐use efficiencies were approximately half of those observed in the normal year. In the summer of 2006, the warm‐season C4 grass, Cynodon dactylon L., exerted an evident positive effect on NEE by converting the ecosystem into a carbon sink after strong rain events and extending the carbon sequestration for several days, after the end of senescence of the C3 grasses. On an annual basis, the GPP and NEE were 524 and 49 g C m?2, respectively, for the dry year, and 1261 and ?190 g C m?2 for the normal year. Therefore, the grassland was a moderate net source of carbon to the atmosphere, in the dry year, and a considerable net carbon sink, in the normal year. In these 2 years of experiment the total amount of precipitation was the main factor determining the interannual variation in NEE. In terms of relevant controls, GPP and NEE were strongly related to incident photosynthetic photon flux density on short‐term time scales. Changes in LAI explained 84% and 77% of the variation found in GPP and NEE, respectively. Variations in Reco were mainly controlled by canopy photosynthesis. After each grazing event, the reduction in LAI affected negatively the NEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号