首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade‐offs that determine trait diversity. In this study, we show how physiological trade‐offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual‐based dynamic vegetation model (i.e., LM3‐PPA). The evolutionary analysis shows that these leaf traits set up a trade‐off between carbon‐ and nitrogen‐use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen‐use efficiency to one that is high in carbon‐use efficiency or, equivalently, from high‐LMA/long‐lived leaves (i.e., evergreen) to low‐LMA/short‐lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3‐PPA from the leaf physiological trade‐offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones.  相似文献   

3.
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC‐AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water‐balance‐related parameters. Temperature‐dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon ‘dieback’ results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long‐term investments are required.  相似文献   

4.
The decomposition of plant material is an important ecosystem process influencing both carbon cycling and soil nutrient availability. Quantifying how plant diversity affects decomposition is thus crucial for predicting the effect of the global decline in plant diversity on ecosystem functioning. Plant diversity could affect the decomposition process both directly through the diversity of the litter, and/or indirectly through the diversity of the host plant community and its affect on the decomposition environment. Using a biodiversity experiment with trees in which both functional and taxonomic diversity were explicitly manipulated independently, we tested the effects of the functional diversity and identity of the living trees separately and in combination with the functional diversity and identity of the decomposing litter on rates of litter decomposition and soil respiration. Plant traits, predominantly leaf chemical and physical traits, were correlated with both litter decomposition and soil respiration rates. Surface litter decomposition, quantified by mass loss in litterbags, was best explained by abundance‐weighted mean trait values of tree species from which the litter was assembled (functional identity). In contrast, soil respiration, which includes decomposition of dissolved organic carbon and root respiration, was best explained by the variance in trait values of the host trees (functional diversity). This research provides insight into the effect of loss of tree diversity in forests on soil processes. Such understanding is essential to predicting changes in the global carbon budget brought on by biodiversity loss.  相似文献   

5.
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.  相似文献   

6.
Question: Land‐use change has a major impact on terrestrial plant communities by affecting fertility and disturbance. We test how particular combinations of plant functional traits can predict species responses to these factors and their abundance in the field by examining whether trade‐offs at the trait level (fundamental trade‐offs) are linked to trade‐offs at the response level (secondary trade‐offs). Location: Central French Alps. Methods: We conducted a pot experiment in which we characterized plant trait syndromes by measuring whole plant and leaf traits for six dominant species, originating from contrasting subalpine grassland types. We characterized their response to nutrient availability, shading and clipping. We quantified factors linked with different land usage in the field to test the relevance of our experimental treatments. Results: We showed that land management affected nutrient concentration in soil, light availability and disturbance intensity. We identified particular suites of traits linked to plant stature and leaf structure which were associated with species responses to these environmental factors. Leaf dry matter content separates fast and slow growing species. Height and lateral spread separated tolerant and intolerant species to shade and clipping. Discussion and Conclusion: Two fundamental trade‐offs based on stature traits and leaf traits were linked to two secondary trade‐offs based on response to fertilization shade and mowing. Based on these trade‐offs, we discuss four different species strategies which could explain and predict species distributions and traits syndrome at community scale under different land‐uses in subalpine grasslands.  相似文献   

7.
Despite increasing evidence on the importance of species functional characteristics for ecosystem processes, two major hypotheses suggest different mechanisms: the ‘mass ratio hypothesis’ assumes that functional traits of the dominant species determine ecosystem processes, while the ‘complementarity hypothesis’ predicts that resource niches may be used more completely when a community is functionally more diverse. Here, we present a method which uses two different groups of biotic predictor variables being (1) abundance‐weighted mean (=aggregated) trait values and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to test the competing hypotheses on biodiversity–ecosystem functioning relationships after accounting for co‐varying abiotic factors. We applied this method to data recorded on biodiversity–biomass relationships and environmental variables in 35 semi‐natural temperate grasslands and used a literature‐based matrix of fourteen plant functional traits to assess the explanatory power of models including different sets of predictor variables. Aboveground community biomass did not correlate with species richness. Abiotic factors, in particular soil nitrogen concentration, explained about 50% of variability in aboveground biomass. The best model incorporating functional trait diversity explained only about 30%, while the best model based on aggregated trait values explained about 54% of variability in aboveground biomass. The inclusion of all predictor variable groups in a combined model increased the predictive power to about 75%. This model comprised soil nitrogen concentration as abiotic factor, aggregated traits being indicative for species competitive dominance (rooting depth, leaf distribution, specific leaf area, perennial life cycle) and functional trait diversity in vegetative plant height, leaf area and life cycle. Our study strongly suggests that abiotic factors, trait values of the dominant species and functional trait diversity in combination may best explain differences in aboveground community biomass in natural ecosystems and that their isolated consideration may be misleading.  相似文献   

8.
The leaf economics spectrum (LES) describes a major axis of plant functional trait variation worldwide, defining suites of leaf traits aligned with resource‐acquisitive to resource‐conservative ecological strategies. The LES has been interpreted to arise from leaf‐level trade‐offs among ecophysiological traits common to all plants. However, it has been suggested that the defining leaf‐level trade‐offs of the LES may not hold within specific functional groups (e.g., herbs) nor within many groups of closely related species, which challenges the usefulness of the LES paradigm across evolutionary scales. Here, we examine the evolution of the LES across 28 species of the diverse herbaceous genus Helianthus (the sunflowers), which occupies a wide range of habitats and climate variation across North America. Using a phylogenetic comparative approach, we find repeated evolution of more resource‐acquisitive LES strategies in cooler, drier, and more fertile environments. We also find macroevolutionary correlations among LES traits that recapitulate aspects of the global LES, but with one major difference: leaf mass per area is uncorrelated with leaf lifespan. This indicates that whole‐plant processes likely drive variation in leaf lifespan across Helianthus, rather than leaf‐level trade‐offs. These results suggest that LES patterns do not reflect universal physiological trade‐offs at small evolutionary scales.  相似文献   

9.
Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step‐wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple‐trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community‐weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits–productivity relationships.  相似文献   

10.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

11.
Aim Two of the oldest observations in plant geography are the increase in plant diversity from the poles towards the tropics and the global geographic distribution of vegetation physiognomy (biomes). The objective of this paper is to use a process‐based vegetation model to evaluate the relationship between modelled and observed global patterns of plant diversity and the geographic distribution of biomes. Location The global terrestrial biosphere. Methods We implemented and tested a novel vegetation model aimed at identifying strategies that enable plants to grow and reproduce within particular climatic conditions across the globe. Our model simulates plant survival according to the fundamental ecophysiological processes of water uptake, photosynthesis, reproduction and phenology. We evaluated the survival of an ensemble of 10,000 plant growth strategies across the range of global climatic conditions. For the simulated regional plant assemblages we quantified functional richness, functional diversity and functional identity. Results A strong relationship was found (correlation coefficient of 0.75) between the modelled and the observed plant diversity. Our approach demonstrates that plant functional dissimilarity increases and then saturates with increasing plant diversity. Six of the major Earth biomes were reproduced by clustering grid cells according to their functional identity (mean functional traits of a regional plant assemblage). These biome clusters were in fair agreement with two other global vegetation schemes: a satellite image classification and a biogeography model (kappa statistics around 0.4). Main conclusions Our model reproduces the observed global patterns of plant diversity and vegetation physiognomy from the number and identity of simulated plant growth strategies. These plant growth strategies emerge from the first principles of climatic constraints and plant functional trade‐offs. Our study makes important contributions to furthering the understanding of how climate affects patterns of plant diversity and vegetation physiognomy from a process‐based rather than a phenomenological perspective.  相似文献   

12.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

13.
Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as “adaptive” or not. Across many groups of plants, trait–climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an “economics spectrum” along which combinations of functional traits covary along a fast–slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic‐niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic‐niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait–climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.  相似文献   

14.
The mechanisms underpinning forest biodiversity‐ecosystem function relationships remain unresolved. Yet, in heterogeneous forests, ecosystem function of different strata could be associated with traits or evolutionary relationships differently. Here, we integrate phylogenies and traits to evaluate the effects of elevational diversity on above‐ground biomass across forest strata and spatial scales. Community‐weighted means of height and leaf phosphorous concentration and functional diversity in specific leaf area exhibited positive correlations with tree biomass, suggesting that both positive selection effects and complementarity occur. However, high shrub biomass is associated with greater dissimilarity in seed mass and multidimensional trait space, while species richness or phylogenetic diversity is the most important predictor for herbaceous biomass, indicating that species complementarity is especially important for understory function. The strength of diversity‐biomass relationships increases at larger spatial scales. We conclude that strata‐ and scale‐ dependent assessments of community structure and function are needed to fully understand how biodiversity influences ecosystem function.  相似文献   

15.
One of the major challenges in ecology is to understand how ecosystems respond to changes in environmental conditions, and how taxonomic and functional diversity mediate these changes. In this study, we use a trait‐spectra and individual‐based model, to analyse variation in forest primary productivity along a 3.3 km elevation gradient in the Amazon‐Andes. The model accurately predicted the magnitude and trends in forest productivity with elevation, with solar radiation and plant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, and wood density) collectively accounting for productivity variation. Remarkably, explicit representation of temperature variation with elevation was not required to achieve accurate predictions of forest productivity, as trait variation driven by species turnover appears to capture the effect of temperature. Our semi‐mechanistic model suggests that spatial variation in traits can potentially be used to estimate spatial variation in productivity at the landscape scale.  相似文献   

16.
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole‐plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm‐temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade‐offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.  相似文献   

17.
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate‐induced biomass responses in 12 co‐occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf‐trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition.  相似文献   

18.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions.  相似文献   

19.
Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund–Potsdam–Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming‐induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land‐use and land‐cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale.  相似文献   

20.
Andrew Siefert  Cyrille Violle  Loïc Chalmandrier  Cécile H. Albert  Adrien Taudiere  Alex Fajardo  Lonnie W. Aarssen  Christopher Baraloto  Marcos B. Carlucci  Marcus V. Cianciaruso  Vinícius de L. Dantas  Francesco de Bello  Leandro D. S. Duarte  Carlos R. Fonseca  Grégoire T. Freschet  Stéphanie Gaucherand  Nicolas Gross  Kouki Hikosaka  Benjamin Jackson  Vincent Jung  Chiho Kamiyama  Masatoshi Katabuchi  Steven W. Kembel  Emilie Kichenin  Nathan J. B. Kraft  Anna Lagerström  Yoann Le Bagousse‐Pinguet  Yuanzhi Li  Norman Mason  Julie Messier  Tohru Nakashizuka  Jacob McC. Overton  Duane A. Peltzer  I. M. Pérez‐Ramos  Valério D. Pillar  Honor C. Prentice  Sarah Richardson  Takehiro Sasaki  Brandon S. Schamp  Christian Schöb  Bill Shipley  Maja Sundqvist  Martin T. Sykes  Marie Vandewalle  David A. Wardle 《Ecology letters》2015,18(12):1406-1419
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号