首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The contexts where drugs are self‐administered play an important role in regulating persistent drug taking and in relapse to such taking after periods of abstinence. Here, we review the behavioral and brain mechanisms enabling contexts to promote and prevent relapse to drug seeking. We review the key brain structures, their neuropharmacology and their connectivity. We discuss the similarities and differences between the mechanisms for context‐induced reinstatement of drug seeking vs. other forms of relapse to drug seeking in animal models and we highlight the numerous deficits in our understanding. We emphasize that current understanding, although significant, defies explanations in terms of models at the level of brain structures and their connectivity. Rather, we show that there is significant functional compartmentalization and segregation within these structures during reinstatement and extinction of drug seeking that parallels their anatomical segregation into circuits and channels. A key challenge is to recognize this complexity, understand how these circuits and channels are organized, as well as understand how different modes of activity of ensembles of neurons within them promote abstinence or relapse to drug seeking.  相似文献   

2.
Individuals who experience traumatic events may develop persistent posttraumatic stress disorder. Patients with this disorder are commonly treated with exposure therapy, which has had limited long‐term success. In experimental neurobiology, fear extinction is a model for exposure therapy. In this behavioral paradigm, animals are repeatedly exposed in a safe environment to the fearful stimulus, which leads to greatly reduced fear. Studying animal models of extinction already has lead to better therapeutic strategies and development of new candidate drugs. Lack of a powerful genetic model of extinction, however, has limited progress in identifying underlying molecular and genetic factors. In this study, we established a robust behavioral paradigm to study the short‐term effect (acquisition) of extinction in Drosophila melanogaster. We focused on the extinction of olfactory aversive 1‐day memory with a task that has been the main workhorse for genetics of memory in flies. Using this paradigm, we show that extinction can inhibit each of two genetically distinct forms of consolidated memory. We then used a series of single‐gene mutants with known impact on associative learning to examine the effects on extinction. We find that extinction is intact in each of these mutants, suggesting that extinction learning relies on different molecular mechanisms than does Pavlovian learning.  相似文献   

3.
Chronic stressors, during developmental sensitive periods and beyond, contribute to the risk of developing psychiatric conditions, including major depressive disorder (MDD). Epigenetic mechanisms including DNA methylation and histone modifications, at key stress response and neurotrophin genes, are increasingly implicated in mediating this risk. Although the exact mechanisms through which stressful environmental stimuli alter the epigenome are still unclear, research from the learning and memory fields indicates that epigenomic marks can be altered, at least in part, through calcium‐dependent signaling cascades in direct response to neuronal activity. In this review, we highlight key findings from the stress, MDD, and learning and memory fields to propose a model where stress regulates downstream cellular functioning through activity‐dependent epigenetic changes. Furthermore, we suggest that both typical and novel antidepressant treatments may exert positive influence through similar, activity‐dependent pathways.  相似文献   

4.
Drugs of addiction lead to a wide range of epigenetic changes at the promoter regions of genes directly implicated in learning and memory processes. We have previously shown that the histone deactylase inhibitor, sodium butyrate (NaB), accelerates the extinction of nicotine‐seeking and provides resistance to relapse. Here, we explore the potential molecular mechanisms underlying this effect. Rats received intravenous nicotine or saline self‐administration, followed by 6 days of extinction training, with each extinction session followed immediately by treatment with NaB or vehicle. On the last day of extinction, rats were killed and the medial ventral prefrontal cortex retained for chromatin immunoprecipitation and quantitative polymerase chain reaction (qPCR). A history of nicotine exposure significantly decreased H3K14 acetylation at the brain‐derived neurotrophic factor (BDNF) exon IV promoter, and this effect was abolished with NaB treatment. In contrast, nicotine self‐administration alone, resulted in a significant decrease in histone methylation at the H3K27me3 and H3K9me2 marks in the promoter regions of BDNF exon IV and cyclin‐dependent kinase 5 (Cdk‐5). Quantitative PCR‐identified changes in several genes associated with NaB treatment that were independent of nicotine exposure; however, an interaction of nicotine history and NaB treatment was detected only in the expression of BDNF IV and BDNF IX. Together these results suggest that nicotine self‐administration leads to a number of epigenetic changes at both the BDNF and Cdk‐5 promoters, and that these changes may contribute to the enhanced extinction of nicotine‐seeking by NaB.  相似文献   

5.
Changes in gene expression in brain reward regions are thought to contribute to the pathogenesis and persistence of drug addiction. Recent studies have begun to focus on the molecular mechanisms by which drugs of abuse and related environmental stimuli, such as drug-associated cues or stress, converge on the genome to alter specific gene programs. Increasing evidence suggests that these stable gene expression changes in neurons are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular and bioinformatic approaches being used to understand the complex epigenetic regulation of gene expression by drugs of abuse. This novel mechanistic insight might open new avenues for improved treatments of drug addiction.  相似文献   

6.
Drug addiction is widely recognized to afflict some but not all individuals by virtue of underlying risk markers and traits involving multifaceted interactions between polygenic and external factors. Remarkably, only a small proportion of individuals exposed to licit and illicit drugs develop compulsive drug‐seeking behavior, maintained in the face of adverse consequences and associated detrimental patterns of drug intake involving extended and repeated bouts of binge intoxication, withdrawal and relapse. As a consequence, research has increasingly endeavored to identify distinctive neurobehavioral mechanisms and endophenotypes that predispose individuals to compulsive drug use. However, research in active drug users is hampered by the difficulty in categorizing putatively causal behavioral traits prior to the initiation of drug use. By contrast, research in experimental animals is often hindered by the validity of approaches used to investigate the neural and psychological mechanisms of compulsive drug‐seeking habits in humans. Herein, we survey and discuss the principal findings emanating from preclinical animal research on addiction and highlight how specific behavioral endophenotypes of presumed genetic origin (e.g. trait anxiety, novelty preference and impulsivity) differentially contribute to compulsive forms of drug seeking and taking and, in particular, how these differentiate between different classes of stimulant and non‐stimulant drugs of abuse.  相似文献   

7.
Psychophysiological markers have been focused to investigate the psychopathology of psychiatric disorders and personality subtypes. In order to understand neurobiological mechanisms underlying these conditions, fear-conditioning model has been widely used. However, simple aversive stimuli are too simplistic to understand mechanisms because most patients with psychiatric disorders are affected by social stressors. The objective of this study was to test the feasibility of a newly-designed conditioning experiment using a stimulus to cause interpersonal conflicts and examine associations between personality traits and response to that stimulus. Twenty-nine healthy individuals underwent the fear conditioning and extinction experiments in response to three types of stimuli: a simple aversive sound, disgusting pictures, and pictures of an actors’ face with unpleasant verbal messages that were designed to cause interpersonal conflicts. Conditioned response was quantified by the skin conductance response (SCR). Correlations between the SCR changes, and personality traits measured by the Zanarini Rating Scale for Borderline Personality Disorder (ZAN-BPD) and Revised NEO Personality Inventory were explored. The interpersonal conflict stimulus resulted in successful conditioning, which was subsequently extinguished, in a similar manner as the other two stimuli. Moreover, a greater degree of conditioned response to the interpersonal conflict stimulus correlated with a higher ZAN-BPD total score. Fear conditioning and extinction can be successfully achieved, using interpersonal conflicts as a stimulus. Given that conditioned fear caused by the interpersonal conflicts is likely associated with borderline personality traits, this paradigm could contribute to further understanding of underlying mechanisms of interpersonal fear implicated in borderline personality disorder.  相似文献   

8.
Increasing evidence indicates the presence of sex differences in many aspects of drug abuse. Most studies reveal that females exceed males during the initiation, escalation, extinction, and reinstatement (relapse) of drug-seeking behavior, but males are more sensitive than females to the aversive effects of drugs such as drug withdrawal. Findings from human and animal research indicate that circulating levels of ovarian steroid hormones account for these sex differences. Estrogen (E) facilitates drug-seeking behavior, while progesterone (P) and its metabolite, allopregnanalone (ALLO), counteract the effects of E and reduce drug seeking. Estrogen and P influence other behaviors that are affiliated with drug abuse such as drug-induced locomotor sensitization and conditioned place preference. The enhanced vulnerability to drug seeking in females vs. males is also additive with the other risk factors for drug abuse (e.g., adolescence, sweet preference, novelty reactivity, and impulsivity). Finally, treatment studies using behavioral or pharmacological interventions, including P and ALLO, also indicate that females show greater treatment effectiveness during several phases of the addiction process. The neurobiological basis of sex differences in drug abuse appears to be genetic and involves the influence of ovarian hormones and their metabolites, the hypothalamic pituitary adrenal (HPA) axis, dopamine (DA), and gamma-hydroxy-butyric acid (GABA). Overall, sex and hormonal status along with other biological risk factors account for a continuum of addiction-prone and -resistant animal models that are valuable for studying drug abuse prevention and treatment strategies.  相似文献   

9.
10.
11.
A cannabinoid mechanism in relapse to cocaine seeking   总被引:21,自引:0,他引:21  
Treatment of cocaine addiction is hampered by high rates of relapse even after prolonged drug abstinence. This relapse to compulsive cocaine use can be triggered by re-exposure to cocaine, by re-exposure to stimuli previously associated with cocaine or by exposure to stress. In laboratory rats, similar events reinstate cocaine seeking after prolonged withdrawal periods, thus providing a model to study neuronal mechanisms underlying the relapse to cocaine. The endocannabinoid system has been implicated in a number of neuropsychiatric conditions, including drug addiction. The active ingredient of marijuana, Delta9-tetrahydrocannabinol, activates the mesolimbic dopamine (DA) reward system and has rewarding effects in preclinical models of drug abuse. We report here that the synthetic cannabinoid agonist, HU210 (ref. 13), provokes relapse to cocaine seeking after prolonged withdrawal periods. Furthermore, the selective CB1 receptor antagonist, SR141716A (ref. 14), attenuates relapse induced by re-exposure to cocaine-associated cues or cocaine itself, but not relapse induced by exposure to stress. These data reveal an important role of the cannabinoid system in the neuronal processes underlying relapse to cocaine seeking, and provide a rationale for the use of cannabinoid receptor antagonists for the prevention of relapse to cocaine use.  相似文献   

12.
Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders.  相似文献   

13.
14.
Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time‐dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age‐related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well‐described molecular and cellular hallmarks and discuss physiological changes of aging at the organ‐system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging.  相似文献   

15.
Fear memory underlies anxiety-related disorders, including posttraumatic stress disorder(PTSD). PTSD is a fear-based disorder,characterized by difficulties in extinguishing the learned fear response and maintaining extinction. Currently, the first-line treatment for PTSD is exposure therapy, which forms an extinction memory to compete with the original fear memory. However,the extinguished fear often returns under numerous circumstances, suggesting that novel methods are needed to eliminate fear memory or facilitate extinction memory. This review discusses research that targeted extinction and reconsolidation to manipulate fear memory. Recent studies indicate that sleep is an active state that can regulate memory processes. We also discuss the influence of sleep on fear memory. For each manipulation, we briefly summarize the neural mechanisms that have been identified in human studies. Finally, we highlight potential limitations and future directions in the field to better translate existing interventions to clinical settings.  相似文献   

16.
Exposure to addictive drugs causes changes in synaptic function within the striatal complex, which can either mimic or interfere with the induction of synaptic plasticity. These synaptic adaptations include changes in the nucleus accumbens (NAc), a ventral striatal subregion important for drug reward and reinforcement, as well as the dorsal striatum, which may promote habitual drug use. As the behavioral effects of drugs of abuse are long-lasting, identifying persistent changes in striatal circuits induced by in vivo drug experience is of considerable importance. Within the striatum, drugs of abuse have been shown to induce modifications in dendritic morphology, ionotropic glutamate receptors (iGluR) and the induction of synaptic plasticity. Understanding the detailed molecular mechanisms underlying these changes in striatal circuit function will provide insight into how drugs of abuse usurp normal learning mechanisms to produce pathological behavior.  相似文献   

17.
The adverse effects of early‐life stress are pervasive, with well‐established mental and physical health consequences for exposed individuals. The impact of early adverse experiences is also highly persistent, with documented increases in risk for mental illness across the life span that are accompanied by stable alterations in neural function and hormonal responses to stress. Here, we review some of these ‘stress phenotypes’, with a focus on intermediary factors that may signal risk for long‐term mental health outcomes, such as altered development of the fear regulation system. Intriguingly, recent research suggests that such stress phenotypes may persist even beyond the life span of the individuals, with consequences for their offspring and grand‐offspring. Phenotypic characteristics may be transmitted to future generations via either the matriline or the patriline, a phenomenon that has been demonstrated in both human and animal studies. In this review, we highlight behavioral and epigenetic factors that may contribute to this multigenerational transmission and discuss the potential of various treatment approaches that may halt the cycle of stress phenotypes.  相似文献   

18.
The metabotropic glutamate receptor subtype 8 (mGlu8) is presynaptically located and regulates the release of the transmitter. Dysfunctions of this mechanism are involved in the pathophysiology of different psychiatric disorders. mGlu8 deficient mice have been previously investigated in a range of studies, but the results are contradictory and there are still many open questions. Therefore, we tested mGlu8-deficient animals in different behavioral tasks that are commonly used in neuropsychiatric research. Our results show a robust contextual fear deficit in mGlu8-deficient mice. Furthermore, novel object recognition, chlordiazepoxide-facilitated extinction of operant conditioning and the acoustic startle response were attenuated by mGlu8 deficiency. We found no changes in sensory processing, locomotor activity, prepulse inhibition, phencyclidine-induced changes in locomotion or prepulse inhibition, operant conditioning, conditioned fear to a discrete cue or in animal models of innate fear and post-traumatic stress disorder. We conclude that mGlu8 might be a potential target for disorders with pathophysiological changes in brain areas where mGlu8 modulates glutamate and gamma-amino butyric acid (GABA) transmission. Our data especially point to anxiety disorders involving exaggerated contextual fear, such as generalized anxiety disorders, and to conditions with disturbed declarative memory.  相似文献   

19.
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction‐relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug‐addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction‐relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.  相似文献   

20.
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X‐ or Y‐linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome‐wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large‐scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome‐wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号