首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: The quality of the Triassic–Jurassic bivalve fossil record in northwest Europe has been measured using the Simple Completeness Metric (SCM). The SCM has been applied to the fossil record of total bivalve diversity and to the records of different ecological guilds. The Westbury and Lilstock Formations record high SCM values for most ecological groups. The ‘Pre‐Planorbis Beds’ of the lower Lias Group, however, witness a precipitous decline in the completeness of most guilds and emigration of taxa due to localized marine anoxia is a likely cause. Neither variation in lithofacies, shell mineralogy, sedimentary rock outcrop area, nor sequence architecture can convincingly explain the observed patterns of completeness. Our SCM data reveal that the Early Jurassic fossil record of infaunal suspension‐feeding bivalves is significantly poorer than that of epifaunal bivalves. Any differences in the apparent Rhaetian extinction rates between these two guilds should therefore be viewed with caution. Analyses of selectivity during the Late Triassic mass extinction based on studies of global databases appear robust in light of our SCM data. Nevertheless, future investigations of the Triassic–Jurassic benthic marine ecosystem undertaken at a finer‐resolution, may need to account for the poor quality of the Early Jurassic fossil records of certain ecological guilds, such as the infaunal suspension‐feeding taxa.  相似文献   

2.
Aim To evaluate the influence of geographical distribution on the extinction risk of benthic marine invertebrates using data from the fossil record, both during times of background extinction and across a mass‐extinction episode. Total geographical range is contrasted with proxies of global abundance to assess the relationships between the two essential components of geographical distribution and extinction risk. Location A global occurrence data base of fossil benthic macro‐organisms from the Triassic and Jurassic periods was used for this study. Methods Geographical distributions and biodiversity dynamics were assessed for each genus (all taxa) or species (bivalves) based on a sample‐standardized data set and palaeogeographical reconstructions. Geographical ranges were measured by the maximum great circle distance of a taxon within a stratigraphic interval. Global abundance was assessed by the number of localities at which a taxon was recorded. Widespread and rare taxa were separated using median and percentile values of the frequency distributions of occurrences. Results The frequency distribution of geographical ranges is very similar to that for modern taxa. Although no significant correlation could be established between local abundance and geographical range, proxies of global abundance are strongly correlated with geographical range. Taxon longevities are correlated with both mean geographical range and mean global abundance, but range size appears to be more critical than abundance in determining extinction risk. These results are valid when geographical distribution is treated as a trait of taxa and when assessed for individual geological stages. Main conclusions Geographical distribution is a key predictor of extinction risk of Triassic and Jurassic benthic marine invertebrates. An important exception is in the end‐Triassic mass extinction, which equally affected geographically restricted and widespread genera, as well as common and rare genera. This suggests that global diversity crises may curtail the role of geographical distribution in determining extinction risk.  相似文献   

3.
The end‐Cretaceous mass extinction ranks among the most severe extinctions of all time; however, patterns of extinction and recovery remain incompletely understood. In particular, it is unclear how severe the extinction was, how rapid the recovery was and how sampling biases might affect our understanding of these processes. To better understand terrestrial extinction and recovery and how sampling influences these patterns, we collected data on the occurrence and abundance of fossil mammals to examine mammalian diversity across the K‐Pg boundary in North America. Our data show that the extinction was more severe and the recovery more rapid than previously thought. Extinction rates are markedly higher than previously estimated: of 59 species, four survived (93% species extinction, 86% of genera). Survival is correlated with geographic range size and abundance, with widespread, common species tending to survive. This creates a sampling artefact in which rare species are both more vulnerable to extinction and less likely to be recovered, such that the fossil record is inherently biased towards the survivors. The recovery was remarkably rapid. Within 300 000 years, local diversity recovered and regional diversity rose to twice Cretaceous levels, driven by increased endemicity; morphological disparity increased above levels observed in the Cretaceous. The speed of the recovery tends to be obscured by sampling effects; faunas show increased endemicity, such that a rapid, regional increase in diversity and disparity is not seen in geographically restricted studies. Sampling biases that operate against rare taxa appear to obscure the severity of extinction and the pace of recovery across the K‐Pg boundary, and similar biases may operate during other extinction events.  相似文献   

4.
Tropical forests are shifting in species and trait composition, but the main underlying causes remain unclear because of the short temporal scales of most studies. Here, we develop a novel approach by linking functional trait data with 7000 years of forest dynamics from a fossil pollen record of Lake Sauce in the Peruvian Amazon. We evaluate how climate and human disturbances affect community trait composition. We found weak relationships between environmental conditions and traits at the taxon level, but strong effects for community‐mean traits. Overall, community‐mean traits were more responsive to human disturbances than to climate change; human‐induced erosion increased the dominance of dense‐wooded, non‐zoochorous species with compound leaves, and human‐induced fire increased the dominance of tall, zoochorous taxa with large seeds and simple leaves. This information can help to enhance our understanding of forest responses to past environmental changes, and improve predictions of future changes in tropical forest composition.  相似文献   

5.
For studies investigating trait evolution, there are at least two important questions. First, have traits under consideration influenced cladogenesis and extinction in the group? Second, how do fossil data alter inferences about trait evolution or diversification‐rate dynamics? However, relatively few studies have assessed these questions. Here, we use recently developed methods to test for trait‐dependent diversification in the New World colubrid snake tribe Lampropeltini. We also integrate data from fossil taxa into phylogenetic estimation of evolutionary parameters using a simple Monte Carlo randomization test. These analyses suggest that ecological conditions in temperate regions are tied to higher rates of cladogenesis, but that body size is not related to diversification in the group. We also find that the inclusion of fossil taxa alters absolute estimates of size and the rate of size evolution, but not the overall pattern of ecomorphological diversification, as well as estimates of evolutionary rates, particularly extinction.  相似文献   

6.
Aim Urban environments around the world share many features in common, including the local extinction of native plant species. We tested the hypothesis that similarity in environmental conditions among urban areas should select for plant species with a particular suite of traits suited to those conditions, and lead to the selective extinction of species lacking those traits. Location Eleven cities with data on the plant species that persisted and those that went locally extinct within at least the last 100 years following urbanization. Methods We compiled data on 11 plant traits for 8269 native species in the 11 cities and used hierarchical logistic regression models to identify the degree to which traits could distinguish species that persisted from those that went locally extinct in each city. The trait effects from each city were then combined in a meta‐analysis. Results The cities fell into two groups: those with relatively low rates of extinction (less than 0.05% species per year – Adelaide, Hong Kong, Los Angeles, San Diego and San Francisco), for which no traits reliably predicted the pattern of extinction, and those with higher rates of extinction (> 0.08% species per year – Auckland, Chicago, Melbourne, New York, Singapore and Worcester, MA), where short‐statured, small‐seeded plants were more likely to go extinct. Main conclusions Our analysis reveals patterns in trait selectivity consistent with local studies, suggesting some consistency in trait selection by urbanization. Overall, however, few traits reliably predicted the pattern of plant extinction across cities, making it difficult to identify a priori the extinction‐prone species most likely to be affected by urban expansion.  相似文献   

7.
Many traits have been linked to extinction risk among modern vertebrates, including mode of life and body size. However, previous work has indicated there is little evidence that body size, or any other trait, was selective during past mass extinctions. Here, we investigate the impact of the Triassic–Jurassic mass extinction on early Archosauromorpha (basal dinosaurs, crocodylomorphs and their relatives) by focusing on body size and other life history traits. We built several new archosauromorph maximum‐likelihood supertrees, incorporating uncertainty in phylogenetic relationships. These supertrees were then employed as a framework to test whether extinction had a phylogenetic signal during the Triassic–Jurassic mass extinction, and whether species with certain traits were more or less likely to go extinct. We find evidence for phylogenetic signal in extinction, in that taxa were more likely to become extinct if a close relative also did. However, there is no correlation between extinction and body size, or any other tested trait. These conclusions add to previous findings that body size, and other traits, were not subject to selection during mass extinctions in closely‐related clades, although the phylogenetic signal in extinction indicates that selection may have acted on traits not investigated here.  相似文献   

8.
It has long been known that species should not be distributed randomly in morphospace (a multidimensional trait space), even under simple models of evolution. However, recent studies suggest that position in morphospace can affect aspects of evolution such as the durations of clades and the species richness of their constituent taxa. Here we investigate the dynamics of morphospace occupancy in living and fossil marine bivalves using shell size and aspect ratio, two functionally important traits. Multiple lines of evidence indicate that the center of a family's morphospace today represents a location where taxonomic diversity is maximized, apparently owing to lower extinction rates. Within individual bivalve families, species with narrow geographic ranges are distributed throughout the morphospace but widespread species, which are generally expected to be extinction resistant, tend to be concentrated near the center. The morphospace centers of most species‐rich families today (defined as the median value for all species in the family) tend to be close to the positions of the family founders, further suggesting an association between position in morphospace and net diversification rates. However, trajectories of individual subclades (genera) are inconsistent with the center of morphospace being an evolutionary attractor.  相似文献   

9.
The Cambrian Period, primarily known for animal life diversifying, experienced global extinctions. Pulses of extinction in Cambrian Series 2 are exemplified by the disappearance of archaeocyath sponges and olenelline and redlichiid trilobites. However, the effect of such extinctions on outer shelf organisms, as typify Burgess Shale‐type (BST) deposits, remains relatively unknown. The phylogeny of naraoiid arthropods, represented in BST deposits globally, has consequently been reconstructed from either side of the Series 2 – Miaolingian extinction event to evaluate the response of offshore marine organisms to Cambrian environmental perturbation. As soft anatomy is known for only a subset of naraoiid species, exoskeletal morphology has proven important. Misszhouia and Naraoia (Naraoia) are distinguished morphometrically by posterior shield length/width and anterior shield length/posterior shield length. Morphometry has also been used to strengthen the identification of some cryptic naraoiid species and revise stratigraphic ranges. A revised naraoiid phylogeny reveals Misszhouia as a monophyletic subgenus, the former genus Pseudonaraoia nests within Naraoia and is placed in synonymy, and the systematic position and status of the Subfamily Liwiinae are sensitive to character weighting. Ten species of Naraoiidae range across the Series 2 – Miaolingian boundary, all naraoiid lineages originating during the main BST window. The persistence of outer shelf naraoiids throughout the Series 2 extinctions suggests that deeper offshore marine environments were resilient to extinction during periods of environmental stress. This study provides novel empirical support for the asylum of BST communities, which may contribute to the taxonomic longevity and widespread geographic distribution of taxa in these biotas.  相似文献   

10.
Extinction risk in the modern world and extinction in the geological past are often linked to aspects of life history or other facets of biology that are phylogenetically conserved within clades. These links can result in phylogenetic clustering of extinction, a measurement comparable across different clades and time periods that can be made in the absence of detailed trait data. This phylogenetic approach is particularly suitable for vertebrate taxa, which often have fragmentary fossil records, but robust, cladistically‐inferred trees. Here we use simulations to investigate the adequacy of measures of phylogenetic clustering of extinction when applied to phylogenies of fossil taxa while assuming a Brownian motion model of trait evolution. We characterize expected biases under a variety of evolutionary and analytical scenarios. Recovery of accurate estimates of extinction clustering depends heavily on the sampling rate, and results can be highly variable across topologies. Clustering is often underestimated at low sampling rates, whereas at high sampling rates it is always overestimated. Sampling rate dictates which cladogram timescaling method will produce the most accurate results, as well as how much of a bias ancestor–descendant pairs introduce. We illustrate this approach by applying two phylogenetic metrics of extinction clustering (Fritz and Purvis's D and Moran's I) to three tetrapod clades across an interval including the Permo‐Triassic mass extinction event. These groups consistently show phylogenetic clustering of extinction, unrelated to change in other quantitative metrics such as taxonomic diversity or extinction intensity.  相似文献   

11.
Taxonomic and ecological recovery from the Cretaceous–Palaeogene (K–Pg) mass extinction 66 million years ago shaped the composition and structure of modern ecosystems. The timing and nature of recovery has been linked to many factors including palaeolatitude, geographical range, the ecology of survivors, incumbency and palaeoenvironmental setting. Using a temporally constrained fossil dataset from one of the most expanded K–Pg successions in the world, integrated with palaeoenvironmental information, we provide the most detailed examination of the patterns and timing of recovery from the K–Pg mass extinction event in the high southern latitudes of Antarctica. The timing of biotic recovery was influenced by global stabilization of the wider Earth system following severe environmental perturbations, apparently regardless of latitude or local environment. Extinction intensity and ecological change were decoupled, with community scale ecological change less distinct compared to other locations, even if the taxonomic severity of the extinction was the same as at lower latitudes. This is consistent with a degree of geographical heterogeneity in the recovery from the K–Pg mass extinction. Recovery in Antarctica was influenced by local factors (such as water depth changes, local volcanism, and possibly incumbency and pre‐adaptation to seasonality of the local benthic molluscan population), and also showed global signals, for example the radiation of the Neogastropoda within the first million years of the Danian, and a shift in dominance between bivalves and gastropods.  相似文献   

12.
In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.  相似文献   

13.
Heim NA  Peters SE 《PloS one》2011,6(5):e18946

Background

Geographic range is a good indicator of extinction susceptibility in fossil marine species and higher taxa. The widely-recognized positive correlation between geographic range and taxonomic duration is typically attributed to either accumulating geographic range with age or an extinction buffering effect, whereby cosmopolitan taxa persist longer because they are reintroduced by dispersal from remote source populations after local extinction. The former hypothesis predicts that all taxa within a region should have equal probabilities of extinction regardless of global distributions while the latter predicts that cosmopolitan genera will have greater survivorship within a region than endemics within the same region. Here we test the assumption that all taxa within a region have equal likelihoods of extinction.

Methodology/Principal Findings

We use North American and European occurrences of marine genera from the Paleobiology Database and the areal extent of marine sedimentary cover in North America to show that endemic and cosmopolitan fossil marine genera have significantly different range-duration relationships and that broad geographic range and longevity are both predicted by regional environmental breadth. Specifically, genera that occur outside of the focal region are significantly longer lived and have larger geographic ranges and environmental breadths within the focal region than do their endemic counterparts, even after controlling for differences in sampling intensity. Analyses of the number of paleoenvironmental zones occupied by endemic and cosmopolitan genera suggest that the number of paleoenvironmental zones occupied is a key factor of geographic range that promotes genus survivorship.

Conclusions/Significance

Wide environmental tolerances within a single region predict both broad geographic range and increased longevity in marine genera over evolutionary time. This result provides a specific driving mechanism for the spatial and temporal distributions of marine genera at regional and global scales and is consistent with the niche-breadth hypothesis operating on macroevolutionary timescales.  相似文献   

14.
The geographic ranges of taxa change in response to environmental conditions. Yet whether rates of range movement (biotic velocities) are phylogenetically conserved is not well known. Phylogenetic conservatism of biotic velocities could reflect similarities among related lineages in climatic tolerances and dispersal‐associated traits. We assess whether late Quaternary biotic velocities were phylogenetically conserved and whether they correlate with climatic tolerances and dispersal‐associated traits. We used phylogenetic regression and nonparametric correlation to evaluate associations between biotic velocities, dispersal‐associated traits, and climatic tolerances for 28 woody plant genera and subgenera in North America. The velocities with which woody plant taxa shifted their core geographic range limits were positively correlated from time step to time step between 16 and 7 ka. The strength of this correlation weakened after 7 ka as the pace of climate change slowed. Dispersal‐associated traits and climatic tolerances were not associated with biotic velocities. Although the biotic velocities of some genera were consistently fast and others consistently slow, biotic velocities were not phylogenetically conserved. The rapid late Quaternary range shifts of plants lacking traits that facilitate frequent long‐distance dispersal has long been noted (i.e., Reid's Paradox). Our results are consistent with this paradox and show that it remains robust when phylogenetic information is taken into account. The lack of association between biotic velocities, dispersal‐associated traits, and climatic tolerances may reflect several, nonmutually exclusive processes, including rare long‐distance dispersal, biotic interactions, and cryptic refugia. Because late Quaternary biotic velocities were decoupled from dispersal‐associated traits, trait data for genera and subgenera cannot be used to predict longer‐term (millennial‐scale) floristic responses to climate change.  相似文献   

15.
Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (< 9%) have a fossil record, compared with 20% of non‐threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19th century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record.  相似文献   

16.
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected.  相似文献   

17.
Life‐history traits such as fecundity and offspring size are shaped by investment trade‐offs faced by mothers and mediated by environmental conditions. We use a 21‐year time series for three populations of wild sockeye salmon (Oncorhynchus nerka) to test predictions for such trade‐offs and responses to conditions faced by females during migration, and offspring during incubation. In years when their 1100 km upstream migration was challenged by high water discharges, females that reached spawning streams had invested less in gonads by producing smaller but not fewer eggs. These smaller eggs produced lighter juveniles, and this effect was further amplified in years when the incubation water was warm. This latter result suggests that there should be selection for larger eggs to compensate in populations that consistently experience warm incubation temperatures. A comparison among 16 populations, with matching migration and rearing environments but different incubation environments (i.e., separate spawning streams), confirmed this prediction; smaller females produced larger eggs for their size in warmer creeks. Taken together, these results reveal how maternal phenotype and environmental conditions can shape patterns of reproductive investment and consequently juvenile fitness‐related traits within and among populations.  相似文献   

18.
Sharks and their relatives (Elasmobranchii) are highly threatened with extinction due to various anthropogenic pressures. The abundant fossil record of fossil taxa has allowed the tracing of the evolutionary history of modern elasmobranchs to at least 250 MYA; nonetheless, exactly how far back the fossil record of living taxa goes has never been collectively surveyed. In this study, the authors assess the representation and extent of the fossil record of elasmobranchs currently living in our oceans by collecting their oldest records and quantifying first appearance dates at different taxonomic levels (i.e., orders, families, genera and species), ecological traits (e.g., body size, habitat and feeding mechanism) and extinction risks (i.e., threatened, not threatened and data deficient). The results of this study confirm the robust representation of higher taxonomic ranks, with all orders, most of the families and over half of the extant genera having a fossil record. Further, they reveal that 10% of the current global species diversity is represented in the geological past. Sharks are better represented and extend deeper in time than rays and skates. While the fossil record of extant genera (e.g., the six gill sharks, Hexanchus) goes as far back as c. 190 MYA, the fossil record of extant species (e.g., the sand shark, Carcharias taurus Rafinesque 1810) extends c. 66 MYA. Although no significant differences were found in the extent of the fossil record between ecological traits, it was found that the currently threatened species have a significantly older fossil record than the not threatened species. This study demonstrate that the fossil record of extant elasmobranchs extends deep into the geologic time, especially in the case of threatened sharks. As such, the elasmobranch geological history has great potential to advance the understanding of how species currently facing extinction have responded to different stressors in the past, thereby providing a deep-time perspective to conservation.  相似文献   

19.
The need for reliable prediction of species distributions dependent upon traits has been hindered by a lack of model transferability testing. We tested the predictive capacity of trait‐SDMs by fitting hierarchical generalised linear models with three trait and four environmental predictors for 20 eucalypt taxa in a reference region. We used these models to predict occurrence for a much larger set of taxa and target areas (82 taxa across 18 target regions) in south‐eastern Australia. Median predictive performance for new species in target regions was 0.65 (area under receiver operating curve) and 1.24 times random (area under precision recall curve). Prediction in target regions did not worsen with increasing geographic, environmental or community compositional distance from the reference region, and was improved with reliable trait–environment relationships. Transfer testing also identified trait–environment relationships that did not transfer. These results give confidence that traits and transfer testing can assist in the hard problem of predicting environmental responses for new species, environmental conditions and regions.  相似文献   

20.
Bridging the gap between the fossil record and conservation biology has recently become of great interest. The enormous number of documented extinctions across different taxa can provide insights into the extinction risk of living species. However, few studies have explored this connection. We used generalised boosted modelling to analyse the impact of several traits that are assumed to influence extinction risk on the stratigraphic duration of amphibian species in the fossil record. We used this fossil‐calibrated model to predict the extinction risk for living species. We observed a high consensus between our predicted species durations and the current IUCN Red List status of living amphibian species. We also found that today's Data Deficient species are mainly predicted to experience short durations, hinting at their likely high threat status. Our study suggests that the fossil record can be a suitable tool for the evaluation of current taxa‐specific Red Listing status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号