首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we have analyzed 44 Y-chromosome biallelic polymorphisms in population samples from northwestern (NW) Africa and the Iberian Peninsula, which allowed us to place each chromosome unequivocally in a phylogenetic tree based on >150 polymorphisms. The most striking results are that contemporary NW African and Iberian populations were found to have originated from distinctly different patrilineages and that the Strait of Gibraltar seems to have acted as a strong (although not complete) barrier to gene flow. In NW African populations, an Upper Paleolithic colonization that probably had its origin in eastern Africa contributed 75% of the current gene pool. In comparison, approximately 78% of contemporary Iberian Y chromosomes originated in an Upper Paleolithic expansion from western Asia, along the northern rim of the Mediterranean basin. Smaller contributions to these gene pools (constituting 13% of Y chromosomes in NW Africa and 10% of Y chromosomes in Iberia) came from the Middle East during the Neolithic and, during subsequent gene flow, from Sub-Saharan to NW Africa. Finally, bidirectional gene flow across the Strait of Gibraltar has been detected: the genetic contribution of European Y chromosomes to the NW African gene pool is estimated at 4%, and NW African populations may have contributed 7% of Iberian Y chromosomes. The Islamic rule of Spain, which began in a.d. 711 and lasted almost 8 centuries, left only a minor contribution to the current Iberian Y-chromosome pool. The high-resolution analysis of the Y chromosome allows us to separate successive migratory components and to precisely quantify each historical layer.  相似文献   

2.
A screening of 22 DNA polymorphisms has been performed in western Mediterranean populations (Iberian Peninsula, Morocco, and Central Mediterranean Islands). The analyzed markers correspond to polymorphic sites in several candidate genes for cardiovascular disease including apolipopoteins and their receptors (APOA1, APOB, APOE, APOC1, APOC2, LPA, and LDLR), genes implied in the hemostasis regulation (Factor VII, alpha and beta-fibrinogen, alpha and beta platelet-integrin, tissue plasminogen activator, and plasminogen activator inhibitor-1), and the angiotensin converting enzyme gene. The results are presented of a partial analysis carried out in following population samples: 6 from the Iberian Peninsula, 2 from Morocco, and 3 from Central Islands. The degree of inter-population diversity was significant and consistent with data from other kind of genetic polymorphisms. The apportionment of the allele frequency variance supported a geographic structure into three main regions: Central Mediterranean Islands, the Iberia Peninsula and North Africa. The genetic distance pattern is compatible with a south-to-north North African influence in the Iberian Peninsula and a remarkable gene flow from sub-Saharan Africa into Morocco. Epidemiologically, North Africa is characterized by high frequencies of LPA PNR alleles with high number of repeats (protective for cardiovascular risk) and high frequencies of the APOE*E4 allele (risk factor) as compared with European populations.  相似文献   

3.
The geographic location of Egypt, at the interface between North Africa, the Middle East, and southern Europe, prompted us to investigate the genetic diversity of this population and its relationship with neighboring populations. To assess the extent to which the modern Egyptian population reflects this intermediate geographic position, ten Unique Event Polymorphisms (UEPs), mapping to the nonrecombining portion of the Y chromosome, have been typed in 164 Y chromosomes from three North African populations. The analysis of these binary markers, which define 11 Y-chromosome lineages, were used to determine the haplogroup frequencies in Egyptians, Moroccan Arabs, and Moroccan Berbers and thereby define the Y-chromosome background in these regions. Pairwise comparisons with a set of 15 different populations from neighboring European, North African, and Middle Eastern populations and geographic analysis showed the absence of any significant genetic barrier in the eastern part of the Mediterranean area, suggesting that genetic variation and gene flow in this area follow the "isolation-by-distance" model. These results are in sharp contrast with the observation of a strong north-south genetic barrier in the western Mediterranean basin, defined by the Gibraltar Strait. Thus, the Y-chromosome gene pool in the modern Egyptian population reflects a mixture of European, Middle Eastern, and African characteristics, highlighting the importance of ancient and recent migration waves, followed by gene flow, in the region.  相似文献   

4.
The potential of Y-chromosome biallelic marker haplotypes to infer population affiliations and structures was exploited to analyze four populations from the southwestern edge of Europe, namely north, central, and south Portugal and Galicia. Three markers subdividing the YAP+ lineage were analyzed: the YAP Alu element insertion itself and the SRY8299 and sY81 base substitutions; these respectively define three haplotypes known as 4, 21, and 8. Only haplotype 21 was detected presenting an increasing north-to-south frequency gradient, from 9.6% (Galicia) to 24.5% (South Portugal). This clinal distribution most likely reflects the genetic input associated with the Neolithic spread of agriculture, but we cannot exclude other movements as potential contributors to the distribution. In this context, it is interesting to note the consistency between the clinal variation and the population movement associated with Islamic rule in Iberia. The absence of haplotype 8, a marker of sub-Saharan populations, suggests that, despite the massive introductions of African slaves in historical times, there was little admixture between the African males and Western Iberian populations.  相似文献   

5.
The variation of 18 Alu polymorphisms and 3 linked STRs was determined in 1,831 individuals from 15 Mediterranean populations to analyze the relationships between human groups in this geographical region and provide a complementary perspective to information from studies based on uniparental markers. Patterns of population diversity revealed by the two kinds of markers examined were different from one another, likely in relation to their different mutation rates. Therefore, while the Alu biallelic variation underlies general heterogeneity throughout the whole Mediterranean region, the combined use of Alu and STR points to a considerable genetic differentiation between the two Mediterranean shores, presumably strengthened by a considerable sub‐Saharan African genetic contribution in North Africa (around 13% calculated from Alu markers). Gene flow analysis confirms the permeability of the Sahara to human passage along with the existence of trans‐Mediterranean interchanges. Two specific Alu/STR combinations—CD4 110(?) and DM 107(?)—detected in all North African samples, the Iberian Peninsula, Greece, Turkey, and some Mediterranean islands suggest an ancient genetic background of current Mediterranean peoples. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of “migratory routes” in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians—from Huelva and Granada provinces—and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.  相似文献   

7.
The Achillea millefolium aggregate is one of the most diverse polyploid complexes of the Northern hemisphere and has its western Eurasian boundary in the Iberian Peninsula. Four ploidy levels have been detected in A. millefolium, three of which have already been found in Iberia (diploid, hexaploid and octoploid), and a fourth (tetraploid) reported during the preparation of this paper. We collected a sample from 26 Iberian populations comprising all ploidy levels, and we used microsatellite markers analyzed as dominant in view of the high ploidy levels. Our goals were to quantify the genetic diversity of A. millefolium in the Iberian Peninsula, to elucidate its genetic structure, to investigate the differences in ploidy levels, and to analyse the dispersal of the species. The lack of spatial genetic structure recovered is linked to both high levels of gene flow between populations and to the fact that most genetic variability occurs within populations. This in turn suggests the existence of a huge panmictic yarrow population in the Iberian Peninsula. This is consistent with the assumption that recent colonization and rapid expansion occurred throughout this area. Likewise, the low levels of genetic variability recovered suggest that bottlenecks and/or founder events may have been involved in this process, and clonal reproduction may have played an important role in maintaining this genetic impoverishment. Indeed, the ecological and phenologic uniformity present in the A. millefolium agg. in Iberia compared to Eurasia and North America may be responsible for the low number of representatives of this complex of species present in the Iberian Peninsula. The low levels of genetic differentiation between ploidy levels recovered in our work suggest the absence of barriers between them.  相似文献   

8.
This study aims at a high-resolution analysis of Y-chromosome J and E haplogroups among Andalusians to reconstruct Neolithic, protohistorical and historical migrations in the Mediterranean region. Genotyping of two samples from Granada (n=250 males) and Huelva (n=167 males) (Spain) with Y-chromosome binary and microsatellite markers was performed, and the results compared with other Mediterranean populations. The two samples showed genetic differences that can be associated with different evolutionary processes. Migrations toward Andalusia probably originated in the Arabian Peninsula, Fertile Crescent, Balkan region and North Africa, and they would have predominantly occurred in protohistoric and historic times. Maritime travel would have notably contributed to recent gene flow into Iberia. This survey highlight the complexity of the Mediterranean migration processes and demonstrate the impact of the different population sources on the genetic composition of the Spanish population. The main in-migrations to Iberia most likely did not occur through intermediate stages or, if such stages did occur, they would have been very few.  相似文献   

9.
《Comptes rendus biologies》2014,337(11):646-656
Andalusia is the most densely populated region of Spain since ancient times, and has a rich history of contacts across the Mediterranean. Earlier studies have underlined the relatively high frequency of the Sub-Saharan GM 1,17 5* haplotype in western Andalusia (Huelva province, n = 252) and neighbouring Atlantic regions. Here, we provide novel data on GM/KM markers in eastern Andalusians (n = 195) from Granada province, where African GM*1,17 5* frequency is relatively high (0.044). The most frequent GM haplotypes in Andalusia parallel the most common in Europe. Altogether, these data allow us to gain insight into the genetic diversity of southern Iberia. Additionally, we assess population structure by comparing our Iberian samples with 41 Mediterranean populations. GM haplotype variation across the Mediterranean reflects intense and complex interactions between North Africans and South Europeans along human history, highlighting that African influence over the Iberian Peninsula does not follow an isotropic pattern.  相似文献   

10.
We have examined the worldwide distribution of a Y-chromosomal base-substitution polymorphism, the T/C transition at SRY-2627, where the T allele defines haplogroup 22; sequencing of primate homologues shows that the ancestral state cannot be determined unambiguously but is probably the C allele. Of 1,191 human Y chromosomes analyzed, 33 belong to haplogroup 22. Twenty-nine come from Iberia, and the highest frequencies are in Basques (11%; n=117) and Catalans (22%; n=32). Microsatellite and minisatellite (MSY1) diversity analysis shows that non-Iberian haplogroup-22 chromosomes are not significantly different from Iberian ones. The simplest interpretation of these data is that haplogroup 22 arose in Iberia and that non-Iberian cases reflect Iberian emigrants. Several different methods were used to date the origin of the polymorphism: microsatellite data gave ages of 1,650, 2,700, 3,100, or 3,450 years, and MSY1 gave ages of 1,000, 2,300, or 2,650 years, although 95% confidence intervals on all of these figures are wide. The age of the split between Basque and Catalan haplogroup-22 chromosomes was calculated as only 20% of the age of the lineage as a whole. This study thus provides evidence for direct or indirect gene flow over the substantial linguistic barrier between the Indo-European and non-Indo-European-speaking populations of the Catalans and the Basques, during the past few thousand years.  相似文献   

11.
Historical and genetic evidences suggest that the recently founded population of Antioquia (Colombia) is potentially useful for the genetic mapping of complex traits. This population was established in the 16th-17th centuries through the admixture of Amerinds, Europeans, and Africans and grew in relative isolation until the late 19th century. To examine the origin of the founders of Antioquia, we typed 11 markers on the nonrecombining portion of the Y chromosome and four markers on mtDNA in a sample of individuals with confirmed Antioquian ancestry. The polymorphisms on the Y chromosome (five biallelic markers and six microsatellites) allow an approximation to the origin of founder men, and those on mtDNA identify the four major founder Native American lineages. These data indicate that approximately 94% of the Y chromosomes are European, 5% are African, and 1% are Amerind. Y-chromosome data are consistent with an origin of founders predominantly in southern Spain but also suggest that a fraction came from northern Iberia and that some possibly had a Sephardic origin. In stark contrast with the Y-chromosome, approximately 90% of the mtDNA gene pool of Antioquia is Amerind, with the frequency of the four Amerind founder lineages being closest to Native Americans currently living in the area. These results indicate a highly asymmetric pattern of mating in early Antioquia, involving mostly immigrant men and local native women. The discordance of our data with blood-group estimates of admixture suggests that the number of founder men was larger than that of women.  相似文献   

12.
Endothelial nitric oxide synthase (eNOS or NOS3) is the main responsible for nitric oxide (NO) production in vascular system and different polymorphisms have been identified in epidemiological studies. Trying to test the eNOS genetic variation in general populations we studied the 27-bp VNTR in intron 4 and G894T substitution in exon 7 markers in 6 Western Mediterranean populations (3 from Iberian Peninsula, 1 from North Africa, and 2 from Sardinia) and a sample from Ivory Coast. The VNTR frequencies in Western Mediterranean and Ivory Coast fit well into the ranges previously described for Europeans and Sub-Saharans respectively, and a typical African allele has been detected in polymorphic frequencies in the Berber sample. The G894T substitution presents the highest frequencies described for the T allele in the North Mediterranean populations. Linkage disequilibrium is present between both markers in all populations except in the Ivory Coast sample. The variation found for these polymorphisms indicates that they may be a useful tool for population studies even at microgeographical level.  相似文献   

13.
To define Y-chromosome haplotypes, we studied seven biallelic polymorphic sites. We combined data with those from four dinucleotide-repeat polymorphisms, to establish Y-chromosome compound superhaplotypes. Eight biallelic haplotypes that matched the dendrogram proposed by other investigators were identified in 762 Y chromosomes from 25 African populations. For each biallelic site, coalescence time of lineages carrying the derived allele was estimated and compared with previous estimates. The "ancestral" haplotype (haplotype 1A) was observed among Ethiopians, "Khoisan" (!Kung and Khwe), and populations from northern Cameroon. Microsatellite distributions within this haplotype showed that the Khoisan haplotypes 1A are widely divergent from those of the other two groups. Populations from northern Africa and northern Cameroon share a haplotype (i.e., 1C), which is not observed in other African populations but represents a major Eurasian cluster. Haplotypes 1C of northern Cameroon are clearly distinct from those of Europe, whereas haplotypes 1C of northern African are well intermingled with those of the other two groups. Apportionment of diversity for the Y-chromosomal biallelic haplotypes was calculated after populations were clustered into different configurations. Despite some correspondence between language affiliation and genetic similarity, geographic proximity seems to be a better predictor of genetic affinity.  相似文献   

14.
The phylogenetic relationships and haplotype diversity of all Iberian barbels were examined by analyzing the complete mitochondrial cytochrome b gene sequence (1141 bp) of 72 specimens from 59 Iberian localities. Phylogenetic findings demonstrated a clear distinction between two mitochondrial lineages and confirmed the existence of two previously considered subgenera: Barbus and Luciobarbus: The first subgenus, Barbus, is represented on the Iberian Peninsula by Barbus haasi and Barbus meridionalis. The second subgenus, Luciobarbus, includes the remaining endemic Iberian species: Barbus comizo, Barbus bocagei, Barbus microcephalus, Barbus sclateri, Barbus guiraonis, and Barbus graellsii. Mean haplotype divergence between these subgenera was 10.40%, providing evidence of a clear subdivision within the Iberian barbels. Our results conflict with those reported in a recent study, based on 307 cytochrome b base pairs, that failed to identify any division within the genus Barbus in the Iberian Peninsula. The inclusion of nine further species belonging to this genus (used as outgroups) allowed us to establish a closer relationship of the Iberian species of the subgenus Barbus with other European taxa than with the Iberian Luciobarbus, which was found to cluster with North African, Caucasian, and Greek species. At the population level, no biogeographic structure was shown by specimens of each species (only 5.98% of the variation was attributable to differences among populations of each species). Given the discrete amount of divergence found among the Luciobarbus species, the formation of current hydrographic basins during the Plio-Pleistocene seems to have played a major role in their isolation and evolution.  相似文献   

15.
There is considerable controversy concerning the origin of Iberian populations of the Mediterranean chameleon, Chamaeleo chamaeleon . Current opinion dictates that Spanish populations result from introductions during the 18th and 19th centuries, with subsequent translocations from the original populations to other parts of Spain. The Portugese population in the Algarve is believed to have been introduced from Africa or Spain during the 1920s. However, Holocene remains of chameleons suggest that the Malaga population at least could have a much older origin. Analysis of sequences from the mitochondrial 16S ribosomal RNA gene of samples from the Iberian Peninsula and North Africa revealed a double origin for the Iberian population. The Mediterranean Iberian (Malaga) population is closely related to Mediterranean North African populations, with Atlantic Iberian populations more closely related to populations of the Atlantic coast of North Africa. The overall genetic differentiation and diversity observed was very low, preventing precise dating of the colonization events. However this low level of differentiation is not consistent with Plio-Pleistocene colonization, the assumed timing for a natural colonization event and suggests that chameleons were probably introduced twice by man in the recent past. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 1–7.  相似文献   

16.
We attempt to address the issue of genetic variation and the pattern of male gene flow among and between five Indian population groups of two different geographic and linguistic affiliations using Y-chromosome markers. We studied 221 males at three Y-chromosome biallelic loci and 184 males for the five Y-chromosome STRs. We observed 111 Y-chromosome STR haplotypes. An analysis of molecular variance (AMOVA) based on Y-chromosome STRs showed that the variation observed between the population groups belonging to two major regions (western and southwestern India) was 0.17%, which was significantly lower than the level of genetic variance among the five populations (0.59%) considered as a single group. Combined haplotype analysis of the five STRs and the biallelic locus 92R7 revealed minimal sharing of haplotypes among these five ethnic groups, irrespective of the similar origin of the linguistic and geographic affiliations; this minimal sharing indicates restricted male gene flow. As a consequence, most of the haplotypes were population specific. Network analysis showed that the haplotypes, which were shared between the populations, seem to have originated from different mutational pathways at different loci. Biallelic markers showed that all five ethnic groups have a similar ancestral origin despite their geographic and linguistic diversity.  相似文献   

17.
黄代新  杨庆恩  尹慧  翟仙敦  杨荣芝 《遗传》2006,28(7):791-798
为了筛选在汉族群体中具有多态性的Y染色体双等位基因标记并获取其群体遗传学数据。采用片段长度差异等位基因特异性PCR和PAGE技术对武汉地区160名男性汉族无关个体的23个Y染色体双等位基因标记(M7,M9,M50,M88,M89,M95,M111,M117,M119,M121,M122,M134,M159,M164,M175,M214,LINE1,MSY2,RPS4Y711,SRY+465,IMS-JST164520,IMS-JST021354和IMS-JST003305)进行分型。除M50、M159和M164外,其余20个标记在武汉汉族群体中均具有遗传多态性,其基因多样性(GD)范围为0.0126~0.4855,共检出35种不同单体群组合(Hg1~35),单体群多样性(HD)为0.9471。表明20个Y染色体双等位基因标记组成的单体群具有较高的遗传多样性,在法医学应用和群体进化研究中具有较高的实用价值。  相似文献   

18.
Eleven biallelic polymorphisms and seven short-tandem-repeat (STR) loci mapping on the nonrecombining portion of the human Y chromosome have been typed in men from northwestern Africa. Analysis of the biallelic markers, which represent probable unique events in human evolution, allowed us to characterize the stable backgrounds or haplogroups of Y chromosomes that prevail in this geographic region. Variation in the more rapidly mutating genetic markers (STRs) has been used both to estimate the time to the most recent common ancestor for STR variability within these stable backgrounds and to explore whether STR differentiation among haplogroups still retains information about their phylogeny. When analysis of molecular variance was used to study the apportionment of STR variation among both genetic backgrounds (i.e., those defined by haplogroups) and population backgrounds, we found STR variability to be clearly structured by haplogroups. More than 80% of the genetic variance was found among haplogroups, whereas only 3.72% of the genetic variation could be attributed to differences among populations-that is, genetic variability appears to be much more structured by lineage than by population. This was confirmed when two population samples from the Iberian Peninsula were added to the analysis. The deep structure of the genetic variation in old genealogical units (haplogroups) challenges a population-based perspective in the comprehension of human genome diversity. A population may be better understood as an association of lineages from a deep and population-independent gene genealogy, rather than as a complete evolutionary unit.  相似文献   

19.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

20.
Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics—North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement—more marked in some regions than in others—plus the effects of genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号