首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study examines a set of 43 compounds for their antileishmanial activities and cytotoxicities. Negative lowest unoccupied molecular orbitas and similar values for the electrophilic Fukui function condensed at the β-position for a subset of δ-substituted α,β-unsaturated cyclic lactones classify them as strong Michael acceptors. There was a well-defined trend of increasing antileishmanial activity with increasing cytotoxicity and large selectivity indices for the most active compounds. Softer compounds were more active than harder ones as observed from the experimental data and rationalised by calculated reactivity indices.  相似文献   

2.
Compounds having α,β-unsaturated lactones display a variety of biological activities. Many research groups have tested both natural and unnatural α,β-unsaturated lactones for as-yet undiscovered biological properties. We synthesized α,β-unsaturated lactones with various substituents at the δ-position and studied their immunosuppressive effects, that is, the inhibition of Interleukin-2 (IL-2) production. Among the compounds synthesized, the benzofuran-substituted α,β-unsaturated lactone 4h showed the best inhibitory activity toward IL-2 production in Jurkat e6-1 T lymphocytes (IC(50)=66.9 nM) without cytotoxicity at 10 μM. The results indicated that 4h may be useful as a potent immunosuppressive agent, as well as in IL-2-related studies.  相似文献   

3.
Mesityl oxide and isophorone, two β-methylated-α,β-unsaturated industrial solvent ketones, were found to be converted to mutagens by aqueous chlorination under conditions of pH and reactant concentration that may be relevant to waste water and drinking water chlorination. Chlorination of millimolar concentrations of isophorone generated mutagens at a pH as low as 8.5, while mutagens were formed from submillimolar concentrations of mesityl oxide at pH 8.5, or millimolar concentrations at pH 7.5. It is suggested that mutagen formation can occur via a haloform reaction at such low pH levels because of extended resonance stabilization of an intermediate carbanion.  相似文献   

4.
Summary A process for l-leucine production was studied using Corynebacterium glutamicum for the conversion of -ketoisocaproate. When this precursor was added to the culture medium in a concentration of 20 g/l about 16 g/l l-leucine were formed after a fermentation time of 57 h and the molar yield was 91%. Using a fed-batch culture it was possible to produce 24 g/l of l-leucine from 32 g/l of -ketoisocaproate within 23 h. Enzymatic studies indicate that in this glutamate-producing bacterium -ketoisocaproate is converted into l-leucine via the transaminase B reaction and l-glutamate is regenerated by the glutamate dehydrogenase. By the addition of -ketoisocaproate to the culture medium the specific activity of transaminase B was increased threefold.  相似文献   

5.
Various synthetic C-16 lactones prepared in earlier work are the Z-isomers. These have been isomerized chemically to the corresponding E-isomers. It is observed that these isomers have different root initiating properties, which reflect the significance of the geometry of double bonds in conjugated γ-lactones which act as plant growth regulators.  相似文献   

6.
A number of yeast species can transform ricinoleic acid into γ-decalactone, a high-value compound with fruity aroma, through β-oxidation. This study investigated the effect of l-carnitine on γ-decalactone production by Saccharomyces cerevisiae MF013 to increase the β-oxidation rate. Results showed that l-carnitine shortened the biotransformation period by approximately 10?h and increased γ-decalactone production by 19.5%. γ-Caprolactone, γ-octalactone, and γ-dodecalactone were separately added to the medium to prevent γ-decalactone degradation by yeast cells at the end of biotransformation. γ-Octalactone competitively inhibited γ-decalactone from binding to lactonase, resulting in an 11% increase in γ-decalactone production. This research proposed an effective approach to improve the γ-decalactone production rate, shorten the biotransformation period, and suppress the γ-decalactone degradation in S. cerevisiae.  相似文献   

7.
Li YP  Li ZJ  Meng XB 《Carbohydrate research》2011,(13):1801-1808
A series of 4,5-substituted chiral γ-lactams were synthesized through a highly diastereoselective addition—rearrangement approach from 2,3-unsaturated sugar lactones. The single-crystal X-ray structure of one product indicated that the sugar ring was attacked from the axial side. Partial reduction of the nitro group produced N-hydroxy-γ-lactams, which were further reduced with TiCl3 to yield the 4,5-substituted chiral γ-lactams. The absolute configuration of C5 of the γ-lactam was determined by NOESY spectra.  相似文献   

8.
The synthesis of 19 compounds derived from l-serine and analogs of p-substituted cinnamic acid is reported. Oxazolines 9 and oxazoles 10 have high antitubercular activity with Minimum Inhibitory Concentration (MIC) of 0.7812–25.0 µg/mL (3.21–100.3 µM), against two strains of Mycobacterium tuberculosis sensitive to first-line drugs Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB), Pyrazinamide (PZE) (H37Rv) and a clinical isolate resistant to INH, RIF and EMB (G122). The cytotoxic evaluation shows that oxazoles have low activity, finding viability>96% against the VERO cell line. The results show these compounds could be considered as future alternatives for antitubercular treatment.  相似文献   

9.
Concerns over sustained availability of fossil resources along with environmental impact of their use have stimulated the development of alternative methods for fuel and chemical production from renewable resources. In this work, we present a new approach to produce α,β-unsaturated carboxylic acids (α,β-UCAs) using an engineered reversal of the β-oxidation (r-BOX) cycle. To increase the availability of both acyl-CoAs and enoyl-CoAs for α,β-UCA production, we use an engineered Escherichia coli strain devoid of mixed-acid fermentation pathways and known thioesterases. Core genes for r-BOX such as thiolase, hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and enoyl-CoA reductase were chromosomally overexpressed under the control of a cumate inducible phage promoter. Native E. coli thioesterase YdiI was used as the cycle-terminating enzyme, as it was found to have not only the ability to convert trans-enoyl-CoAs to the corresponding α,β-UCAs, but also a very low catalytic efficiency on acetyl-CoA, the primer and extender unit for the r-BOX pathway. Coupling of r-BOX with YdiI led to crotonic acid production at titers reaching 1.5 g/L in flask cultures and 3.2 g/L in a controlled bioreactor. The engineered r-BOX pathway was also used to achieve for the first time the production of 2-hexenoic acid, 2-octenoic acid, and 2-decenoic acid at a final titer of 0.2 g/L. The superior nature of the engineered pathway was further validated through the use of in silico metabolic flux analysis, which showed the ability of r-BOX to support growth-coupled production of α,β-UCAs with a higher ATP efficiency than the widely used fatty acid biosynthesis pathway. Taken together, our findings suggest that r-BOX could be an ideal platform to implement the biological production of α,β-UCAs.  相似文献   

10.
Summary Several ,-unsaturated and aromatic aldehydes were evaluated for antimicrobial activity usingMycobacterium bovis as the test strain. Activity of most of the compounds was determined in the presence and absence of 2% glutaraldehyde. Several compounds highly active against this organism, e.g. 2-pentenal, benzaldehyde, ando-phthalaldehyde showed rapid kill of >105 CFU ml–1 in 5 min. Activity of ,-unsaturated compounds substituted in the 1 position showed increasing activity with increasing chain length. Of the aromatic aldehydes tested, benzaldehyde andp-dimethylamino benzaldehyde showed little activity alone, but when combined with 2% glutaraldehyde showed increased activity. Substituents added to the benzaldehyde ring (nitro, chloro, methyl, and methoxy) all detracted from the synergism, but still showed increased activity over the activity of 2% glutaraldehyde. The same affect was noted with disubstituted benzaldehyde compounds but not with substitutedo-phthaladehyde (2-formylformaldehyde).  相似文献   

11.
A new method is reported for the synthesis of the α,β-unsaturated nitrone moiety characteristic of the stephacidin/avrainvillamide family of bioactive prenylated indole alkaloids. Application to the synthesis of stephacidin analogs and a potential biological probe are showcased.  相似文献   

12.
We studied the enhanced production of high quality biomass, δ-aminolevulinic acid (δ-ALA), bilipigments, and antioxidants from five tropical blue green algae (cyanobacteria) in a full factorial design using free and immobilized cells in batch culture. Production of nutraceuticals was high in spray dried powder prepared from immobilized cell cultures. Nostochopsis lobatus showed superiority over rest of the species with respect to bilipigments, δ-ALA, nutritive value, antioxidant capacity, and ascorbate oxidase (APX) activity. Antioxidative capacity of phycobiliproteins extracted from these cyanobacteria (121.15 μM TE/g, Nostoc verrucosum to 217.62 μM TE/g, Nostochopsis lobatus) was invariably higher than those observed for higher plant sources and substantially increased under immobilized cell culture condition. Antioxidative enzyme, ascorbate oxidase remained stable in dry food preparations with considerably high activity under immobilized cell preparations (APXmax, 3.40 μmol/min/mg chlorophyll). These observations have important connotations in light of upcoming food and nutraceutical industries in the global market. Use of immobilized cells in batch culture could be an effective approach for scaling up production for commercial use.  相似文献   

13.
Measurements of the singlet oxygen (1O2) quenching rates (kQ (S)) and the relative singlet oxygen absorption capacity (SOAC) values were performed for 11 antioxidants (AOs) (eight vitamin E homologues (α-, β-, γ-, and δ-tocopherols and -tocotrienols (-Tocs and -Toc-3s)), two vitamin E metabolites (α- and γ-carboxyethyl-6-hydroxychroman), and trolox) in ethanol/chloroform/D2O (50:50:1, v/v/v) and ethanol solutions at 35?°C. Similar measurements were performed for five palm oil extracts 1–5 and one soybean extract 6, which included different concentrations of Tocs, Toc-3s, and carotenoids. Furthermore, the concentrations (wt%) of Tocs, Toc-3s, and carotenoids included in extracts 1–6 were determined. From the results, it has been clarified that the 1O2-quenching rates (kQ (S)) (that is, the relative SOAC value) obtained for extracts 1–6 may be explained as the sum of the product {Σ kQAO-i (S) [AO-i]/100} of the rate constant (kQAO-i (S)) and the concentration ([AO-i]/100) of AO-i (Tocs, Toc-3s, and carotenoid) included.  相似文献   

14.
A biotechnological process concept for generation and in?situ separation of natural β-ionone from β-carotene is presented. The process employs carotenoid cleavage dioxygenases (CCDs), a plant-derived iron-containing nonheme enzyme family requiring only dissolved oxygen as cosubstrate and no additional cofactors. Organophilic pervaporation was found to be very well suited for continuous in?situ separation of β-ionone. Its application led to a highly pure product despite the complexity of the reaction solution containing cell homogenates. Among three different pervaporation membrane types tested, a polyoctylmethylsiloxane active layer on a porous polyetherimide support led to the best results. A laboratory-scale demonstration plant was set up, and a highly pure aqueous–ethanolic solution of β-ionone was produced from β-carotene. The described process permits generation of high-value flavor and fragrance compounds bearing the desired label “natural” according to US and European food and safety regulations and demonstrates the potential of CCD enzymes for selective oxidative cleavage of carotenoids.  相似文献   

15.
The synthesis of six α,β,-unsaturated amides and six 2,4-disubstituted oxazolines derivatives and their evaluation against two Mycobacterium tuberculosis strains (sensitive H37Rv and a resistant clinical isolate) is reported. 2,4-Disubstituted oxazolines (S)-3b,d,e were the most active in the sensitive strain with a MIC of 14.2, 13.6 and 10.8 μM, respectively, and the compounds (S)-3d,f were the most active against resistant strain with a MIC of 6.8 and 7.4 μM. The ex-vivo evaluation of hepatotoxicity on precision-cut rat liver slices was also tested for the α,β-unsaturated amides (S)-2b and (S)-2d,f and for the oxazolines (S)-3b and (S)-3d,f at different concentrations (5, 15 and 30 μg/mL). The results indicate that these compounds possess promising antimycobacterial activity and at the same time are not hepatotoxic. These findings open the possibility for development of new drugs against tuberculosis.  相似文献   

16.
An α-neoagarobiose hydrolase (α-NABH) from Cellulophaga sp. W5C, designated as AhgI, was identified, purified, and characterized. Its 1227 base pairs of coded sequence translate into a 408-amino acid protein that belongs to the GH117 family. Multiple sequence alignment of AhgI with other known α-NABHs showed 83% homology with AhgA from Zobellia galactanivorans. AhgI had an apparent molecular weight of 45 kDa and was highly active at pH 7.0 and 20 °C. The Km and Vmax values for neoagarobiose (NA2) were 1.03 mM and 10.22 U/mg, respectively. Apart from NA2, the enzyme showed activity against other neoagaro-oligosaccharides such as neoagarotetraose (NA4) and neoagarohexaose (NA6). AhgI was then employed in a prototype process to produce D-galactonate from Gelidium amansii. Agar from G. amansii was hydrothermally extracted and then enzymatically hydrolyzed by sequential addition of β-agarases and AhgI. The final hydrolysate containing D-galactose was then utilized for the microbial production of D-galactonate. This is believed to be the first report on the identification and characterization of an α-NABH derived from Cellulophaga species and its subsequent application in the synthesis of a value-added chemical directly from marine macroalgae.  相似文献   

17.
18.
α,β-unsaturated aryl ketones, 1a–12, have been submitted to the action of the fungus Beauveria bassiana (ATCC 7159) in growing conditions. The saturation of the double bond strictly depends from the substituent α to the carbonyl group. The saturated ketone is then oxidised in a Baeyer-Villiger type reaction. This new oxidative capacity of the fungus has been studied and the adaptability of the micro organism towards structural modifications has been investigated.  相似文献   

19.
20.
4-Hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product formed during oxidative stress that can alter protein function via adduction of nucleophilic amino acid residues. 4-HNE detoxification occurs mainly via glutathione (GSH) conjugation and transporter-mediated efflux. This results in a net loss of cellular GSH, and restoration of GSH homeostasis requires de novo GSH biosynthesis. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate-cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modulatory (GCLM) subunit. The relative levels of the GCL subunits are a major determinant of cellular GSH biosynthetic capacity and 4-HNE induces the expression of both GCL subunits. In this study, we demonstrate that 4-HNE can alter GCL holoenzyme formation and activity via direct posttranslational modification of the GCL subunits in vitro. 4-HNE directly modified Cys553 of GCLC and Cys35 of GCLM in vitro, which significantly increased monomeric GCLC enzymatic activity, but reduced GCL holoenzyme activity and formation of the GCL holoenzyme complex. In silico molecular modeling studies also indicate these residues are likely to be functionally relevant. Within a cellular context, this novel posttranslational regulation of GCL activity could significantly affect cellular GSH homeostasis and GSH-dependent detoxification during periods of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号