首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerbilliscus has recently been proposed as an endemic African rodent genus distinct from the Asian Tatera. A molecular phylogeny of the genus, including nine species from southern, western and eastern Africa, is presented here based on the analysis of the cytochrome b and 16S mitochondrial genes. With an adequate taxonomic sampling over a wide geographic range, we here provide a clear picture of the phylogenetic relationships between species and species groups in this genus. Three distinct clades were resolved, corresponding to major geographical subdivisions: an eastern clade that possibly diverged first, then a southern and a western clades which appeared later. We suggest two possible hypotheses concerning the dispersal of the genus across Africa, considering also the patterns of karyotypic variation. Finally, we discuss the taxonomic status of G. gambianus and the relationships between Gerbillurus and Gerbilliscus, as previous studies have suggested that the former should be included in the latter. Our data seem to support the synonymy of the two taxa and suggest that Gerbillurus and Gerbilliscus lineages diverged from a common ancestor appeared in eastern Africa.  相似文献   

2.
West African gerbils of the genus Taterillus constitute a complex of seven sibling species distributed from sudano-guinean to saharo-sahelian regions. They display radically rearranged karyotypes despite low genic divergence and a very recent differentiation, that is, within the last 0.4 Myr for the six most derived species. We here provide a comparison of the seven specific karyotypes and perform a cladistic analysis using chromosomal rearrangements character states. When a posteriori polarized mutations were mapped onto the phylogenetic tree, 38 rearrangements were identified as fixed during the evolution of these rodents. This makes Taterillus one of the most striking examples of accelerated chromosomal evolution within placental mammals. Taking into account the types of chromosomal changes involved, divergence times between lineages, genetic distances, as well as reassessed geographic distributions, we suggest that (1) speciation in West African Taterillus was driven by chromosomal changes, and (2) the paleoclimatic oscillations of the Sahara desert have played a major role in their evolution. In particular, elevated plasticity of the Taterillus genome, as suggested by the patterns observed for some repetitive elements, would have led to a higher probability of mutation. We hypothesize that the process underpinning cladogenesis most probably involved highly underdominant genomic rearrangements that were fixed following pronounced populational bottlenecks resulting from drastic climatic and subsequent environmental changes. Major African rivers formed significant barriers to dispersal, limiting expansion during the more moist and so favorable periods. This scenario would explain the current parapatric species distributions and their relationship to the West African hydrographic features.  相似文献   

3.
Chromosomal banding data on three species of Tatera from Kenya significantly alter the previous hypothesis of relationships between and within the genera Tatera and Gerbillurus based on cladistic analyses and the rule of parsimony (Qumsiyeh, 1986b). Of the many possible hypothetical relationships, the most parsimonious tree showed three homoplasies and allowed the genus Gerbillurus to be paraphyletic. The alternative trees, depicting larger number of homoplasies but with homoplasies restricted to fusion or fission events, were compatible with the morphological data in supporting the monophyly of Gerbillurus. To choose between the hypothesis based on the most parsimonious chromosomal tree and those supported by both morphology and slightly less parsimonious chromosomal trees, we performed an electrophoretic study on this group of gerbils. The conclusions are that the genus Gerbillurus is monophyletic and represents a branch that is closely related to the T. robusta group of Taterillini. The study documents that fissions and fusions must have occurred frequently and that in some cases the same fusions were acquired in two independent lineages in numbers exceeding those that are predicted by strict parsimony. The results raise questions about the validity of systematic conclusions based solely on fusion/fission data and utilizing the parsimony criterion.  相似文献   

4.
5.
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large‐bodied taxa. We exploited the broad southern African distribution of a savanna–woodland‐adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270–0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional ‘megadroughts’. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065–0.035 mya, a time that coincides with savanna–woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.  相似文献   

6.
Theoretical configurations of meiotic chromosomes of potential hybrids between the different Lepilemur species were examined, and the classification of this genus was reviewed in the light of this information. Among the chromosomal rearrangements that occurred during the chromosomal evolution of the sportive lemurs, only those which would generate a pronounced reproductive barrier were considered in relation to the geographic distribution of this genus. The analysis showed that the pattern of geographic distribution is compatible with the inferred chronological occurrence of these chromosomal rearrangements in the phylogenetic tree of the genus Lepilemur.  相似文献   

7.
The effects of diets differing in energy and water content on the energy turnover rates and water flux of four Gerbillurus species have been examined in the laboratory. Gerbillurus tytonis. a dune species, had higher than predicted daily energy expenditure (DEE) and high water turnover rates (WTR) for a small desert mammal. The large Gerbillurus setzeri , which occurs on gravel plains, has slightly lower than predicted DEE and lower WTR than the other gerbil species studied. The Gerbillurus species examined have DEE and WTR that are affected by the protein content and potential water yield of food eaten. The importance of diet selection for water and energy budgets are discussed as adaptive strategies employed for survival and reproduction within the southern African arid zone.  相似文献   

8.
Based on morphological data and analysis of mitochondrial cytochrome b gene and nuclear (S7 intron 1) DNA sequences, the phylogenetic relationships of all Pollimyrus species known from the Omo‐Turkana enclosed basin and Nile system below the Murchison Falls were solved. A mormyrid “Pollimyruspetherici is distantly related to all other studied Pollimyrus species and clusters together with Cyphomyrus species forming with the later a monophyletic group. Moreover, the West African (but not the Congo River) populations of Cyphomyrus psittacus, the type species of the genus, seem to be conspecific to C. petherici. That is, the range of the genus Cyphomyrus is extended toward the Nile and Omo‐Turkana basins. This genus belongs to the large clade widely distributed in sub‐Saharian Africa and characterized by the presence of a chin appendage. Significance of this character for mormyrid phylogeny is discussed. Two distinct lineages of Pollimyrus occurring sympatrically in the White Nile tributaries and previously reported as the light and dark forms of Pollimyrus isidori together with five other congeneric species studied form a monophyletic group. The light form apparently represents P. isidori distributed in the Nile system downstream of the Murchison Falls and West Africa; the dark‐colored form (designated as Pollimyrus “D”) represents a distinct phylogenetic lineage inhabiting both the Omo‐Turkana and the White Nile basin. Morphological and ecological data suggest that this form may be conspecific to East African Pollimyrus nigricans or most probably represents a new species.  相似文献   

9.
Accurately defining species boundaries in the green algae (Chlorophyta) is integral for studies of biodiversity and conservation, water‐quality assessments, and the use of particular species as paleoindicators. Recent molecular phylogenetic and SEM analyses of the family Hydrodictyaceae (Chlorophyta) resolved three phylogenetic lineages of isolates with the Pediastrum duplex Meyen 1829 phenotype. The present study employed analyses of cell shape and cell wall ultrastructure to determine if the three lineages possessing the P. duplex morphotype were distinguishable. Only one of the groups, containing isolates with the P. duplex var. gracillimum West et G. S. West phenotype, was shown to be morphologically distinct from the other two P. duplex groups. The erection of a new genus, Lacunastrum, is proposed to recognize this group as a separate taxon.  相似文献   

10.
A Brehm  C B Krimbas 《Génome》1992,35(6):1075-1085
The phylogenetic relationships among nine species belonging to the obscura group of the genus Drosophila were deduced, based on similarities of the banding pattern of their polytene chromosomal element D. These similarities were inferred by the comparison of chromosomal photomaps. The phylogenetic reconstruction was the most parsimonious based on seriation by overlapping inversions and on the principle of conservation/disassociation of nearby located segments. The gene sequences of element D for all species studied were relatively easy to recognize in terms of the map of D. obscura, already found to occupy a relative central position in this group. Thus, three clusters of closely related species could be identified: obscura (D. obscura, D. ambigua, and D. tristis), African (D. kitumensis and D. microlabis), and subobscura (D. subobscura, D. madeirensis and D. guanche), with D. subsilvestris standing apart. The results are in agreement with those from the previously studied elements B and E, but element D was found to be much more conclusive concerning the links among the different clusters. Thus, it is inferred that D. guanche occupies an intermediate position between the other two species of its own cluster and all the others. The gene arrangement of D. obscura, directly related to those of the other species, has been identified. In the phylogenetic tree proposed, both the African cluster and D. subsilvestris derive from a hypothetical gene arrangement, intermediate in the pathway between the subobscura and obscura clusters.  相似文献   

11.
The karyotypes have been determined of 16 of the 32 species of the genus Varanus, including animals from Africa, Israel, Malaya and Australia. A constant chromosome number of 2n = 40 was observed. The karyotype is divided into eight pairs of large chromosomes and 12 paris of microchromosomes. A series of chromosomal rearrangements have become established in both size groups of the karyotype and are restricted to centromers shifts, probably caused by pericentric inversion. Species could be placed in one of six distinct karyotype groups which are differentiated by these rearrangements and whose grouping does not always correspond with the current taxonomy. An unusual sex chromosome system of the ZZ/ZW type was present in a number of the species examined. The evolutionary significance of these chromosomal rearrangements, their origin and their mode of establishment are discussed and related to the current taxonomic groupings. The most likely phylogenetic model based on chromosome morphology, fossil evidence and the current distribution of the genus Varanus is presented.  相似文献   

12.
Bhutkar A  Schaeffer SW  Russo SM  Xu M  Smith TF  Gelbart WM 《Genetics》2008,179(3):1657-1680
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.  相似文献   

13.
The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically.  相似文献   

14.
Seven species of the family Cercopithecidae have been studied using highresolution banding techniques. Comparative studies allowed us to identify the main chromosomal reorganizations in this group, as well as to establish the phylogenetic relationships between species. Some of the regions involved in evolutionary rearrangements correspond to human fragile sites and/or chromosomal rearrangements related to neoplasia.  相似文献   

15.
The unstriped grass rat, Arvicanthis Lesson 1842, is one of the most common genera of murid rodents in African savannas. However, from a systematic viewpoint, very little is known about this group. Following recent investigations which showed karyotypic variability within the species A. niloticus , the present study attempts to clarify the nature and distribution of these chromosomal variants, as well as to determine their taxonomic rank.
The chromosomes of 15 individuals from different West African localities were prepared from fibroblast cultures, and R- and C-banded karyotypes were constructed. In addition, the levels of genetic divergence (DNA/DNA hybridization) and reproductive isolation (attempted crossbreeding in captivity) were examined. The results confirm the existence of two differentiated karyomorphs, differing by numerous chromosomal rearrangements such as pericentric inversions and translocations, as well as differences in the quantity of constitutive heterochromatin. These karyomorphs appear to be genetically and reproductively isolated and are parapatrically distributed; their areas of distribution correspond to the sahelian and sudano-guinean domains, respectively. The distinctness of these karyomorphs, the absence of hybrids in laboratory crosses, and the pronounced genetic divergence provide good evidence for the recognition of two distinct sibling species. We propose to keep the designation A. niloticus for the northern sahelian form and discuss the naming alternatives for the other.  相似文献   

16.
Chromosome number, C-value and cell volume studies were carried out on three species of the genus Channa , viz., C. punctatus, C. striatus and C. gachua . The chromosome number, karyotypic structure and DNA content per cell along with cell volume are reported and described. A series of chromosomal rearrangements are established in three different karyotypes along with polyploidy. Both pericentric inversion and Robertsonian fusion played a major role in chromosome rearrangements. The nuclear DNA content of these three species is within 19-29% of the present-day placental mammals, and is thus lower than the median amount for fishes in general and teleosts in particular. Their lower DNA content suggests that the three species of the family Channidae are highly specialized, and this is supported by their known morphologic, reproductive, behavioural and ecological characteristics.
The evolutionary significance of these chromosomal rearrangements, their origin and their mode of establishment are discussed. A probable phylogenetic model based on karyotype, C-value and chromosomal rearrangements of the genus is presented.  相似文献   

17.
Chromosome rearrangements are considered as "rare genomic changes" and can provide useful markers and even landmarks for reconstructing phylogenies complementary to DNA sequence data and bio-morphological comparisons. Here, we applied multi-directional chromosome painting to reconstruct the chromosome phylogeny and evolutionary relationships among the New World monkey (Platyrrhini) species Callithrix argentata, Cebuella pygmaea, Saguinus oedipus, Callithrix jacchus and Callimico goeldii. The results clarified several aspects of New Wold monkey phylogeny. In particular the phylogenetic position of C. goeldii was elucidated, which has been controversially discussed and variously classified in the family Callitrichidae, in the family Cebidae or in its own family Callimiconidae. Comparative genome maps were established by multi-color fluorescence in situ hybridization (FISH) with human, S. oedipus and Lagothrix lagothricha chromosome- specific DNA probes. From these data we reconstructed the putative ancestral karyotype of all Callitrichidae. Various derived chromosomal syntenies are shared by all five species and cytogenetically define Callitrichidae - including Callimico goeldii -- as a distinctive group within the Platyrrhini. C. pygmaea and C. argentata share identical chromosomal syntenies from which S. oedipus and C. jacchus differ by single independent translocations. A common derived chromosomal change links Callimico with the marmosets to the exclusion of the tamarins, however, it has further diverged from an ancestral marmoset karyotype by at least four apomorphic rearrangements. Saimiri sciureus, representing the Cebinae, exclusively shares a derived syntenic association with all Callithrichidae, defining the genus Saimiri as a sister group.  相似文献   

18.
The genus Sorex is one of the most successful genera of Eulipotyphla. Species of this genus are characterized by a striking chromosome variability including XY1Y2 sex chromosome systems and exceptional chromosomal polymorphisms within and between populations. To study chromosomal evolution of the genus in detail, we performed cross-species chromosome painting of 7 Sorex species with S. granarius and S. araneus whole-chromosome probes and found that the tundra shrew S. tundrensis has the most rearranged karyotype among these. We reconstructed robust phylogeny of the genus Sorex based on revealed conserved chromosomal segments and syntenic associations. About 16 rearrangements led to formation of 2 major Palearctic groups after their divergence from the common ancestor: the S. araneus group (10 fusions and 1 fission) and the S. minutus group (5 fusions). Further chromosomal evolution of the 12 species inside the groups, including 5 previously investigated species, was accompanied by multiple reshuffling events: 39 fusions, 20 centromere shifts and 10 fissions. The rate of chromosomal exchanges upon formation of the genus was close to the average rate for eutherians, but increased during recent (about 6-3 million years ago) speciation within Sorex. We propose that a plausible ancestral Sorex karyotype consists of 56 elements. It underwent 20 chromosome rearrangements from the boreoeutherian ancestor, with 14 chromosomes retaining the conserved state. The set of genus-specific chromosome signatures was drawn from the human (HSA)-shrew comparative map (HSA3/12/22, 8/19/3/21, 2/13, 3/18, 11/17, 12/15 and 1/12/22). The syntenic association HSA4/20, that was previously proposed as a common trait of all Eulipotyphla species, is shown here to be an apomorphic trait of S. araneus.  相似文献   

19.
We investigated chromosomal evolution in the African killifish species Chromaphyosemion bivittatum using a combination of cytogenetic and phylogenetic methods. Specimens from five populations were examined by conventional Giemsa staining as well as sequential chromosome banding with 4',6-diamidino-2-phenylindole (DAPI), chromomycin A(3) (CMA(3)), AgNO(3)-staining and C-banding. The cytogenetic analysis revealed variability in 2n ranging from 2n = 29 to 2n = 36 and in NF ranging from NF = 38 to NF = 44. Two populations showed an extensive chromosomal polymorphism (2n = 29-34, NF = 44 and 2n = 32-34, NF = 38-42, respectively). Karyotypic variability within and among populations was mainly due to Robertsonian translocations and heterochromatin additions, and chromosome banding patterns suggested that both types of chromosomal rearrangements were related to the presence of AT-rich heterochromatin. A phylogenetic analysis of the partial mitochondrial (mt) cytochrome b gene, using specimens from eleven populations, revealed a low degree of haplotype differentiation, which suggested a relatively recent divergence of the populations examined. This finding conformed to the low degree of morphological differentiation observed among C. bivittatum populations and might indicate fast chromosomal evolution. The high karyotypic variability may be caused by an elevated chromosomal mutation rate as well as certain aspects of the mating system and population dynamics of C. bivittatum facilitating the fixation of new chromosomal variants.  相似文献   

20.
We used a five-gene data set (mtDNA: 12S rRNA, 16S rRNA, cyt-b; nDNA: Cmos, Rag2) comprising approximately two-thirds of all extant testudinid species and, for the first time, including all five Testudo species to investigate the question of whether all western Palaearctic testudinids are monophyletic. Further, we examined whether the recently suggested allocation of the African Geochelone pardalis in the otherwise exclusively South African genus Psammobates and of the Malagasy G. yniphora in the monotypic genus Angonoka is justified in the face of considerable morphological evidence against such placements. Our phylogenetic analyses do not support the paraphyly and generic break-up of Testudo, as suggested by previous papers using a smaller taxon sampling and mtDNA data only. We propose a continued usage of the generic name Testudo for all five western Palaearctic tortoise species. Within Testudo, two monophyletic subclades are present, one containing T. hermanni+T. horsfieldii, and the other comprising (T. kleinmanni+T. marginata)+T. graeca. Nomenclaturally, we demonstrate that Eurotestudo Lapparent de Broin et al., 2006, which was recently erected with the type species T. hermanni, is an objective junior synonym of Chersine Merrem, 1820 and Medaestia Wussow, 1916. Recognition of a monotypic genus Angonoka for G. yniphora is unwarranted according to both our re-analysis of sequence data and morphological data. Acknowledging the strong morphological similarity between G. yniphora and G. radiata, we suggest placing both species into the genus Astrochelys. Although sequence data for only one of the three Psammobates species was available for analysis, there is currently no cause to challenge the monophyly of this genus as established on the basis of morphological evidence. Thus, we hypothesize that G. pardalis is sister to a monophyletic Psammobates. In light of the clear morphological gap between G. pardalis and Psammobates species, the recognition of a distinct genus Stigmochelys for the former seems justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号