首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
骨骼肌的生长发育是影响猪肉产量和品质的重要因素,其受遗传和营养等众多因素的精细调控。MicroRNA (miRNA)是一种长度约为22 nt的非编码RNA,通过与靶基因的mRNA 3′UTR序列结合,调控其转录后的表达发挥作用。近年来,大量的研究表明miRNA参与机体的生长发育、生殖、疾病等多种生命过程。本文对miRNA在猪骨骼肌发育调控中的作用进行了综述,以期为猪的遗传改良提供参考和借鉴。  相似文献   

4.
5.
瘦肉率对生猪产业来说是一个极其重要的经济指标,而这一指标完全取决于骨骼肌的生长发育。因此,猪骨骼肌生长发育机理的研究是十分必要的。然而,在早期由于各种因素的限制,猪骨骼肌单个基因的研究一直进展缓慢;相反,以小鼠为模型,其骨骼肌单基因的功能研究却取得了较大进展。在这一时期,影响肌决定和肌分化的基因,如MRFs家族和MEF2家族相继被发现,这些基因在猪的肌肉发育中也发挥着同样的作用。然而,这些结果并不能很好地揭示骨骼肌发育过程中复杂的基因间互作关系。随着近年来芯片和测序技术的不断发展,更多人试图从整个转录谱的水平来阐述猪肌肉发育的分子机理,并且也取得了较大的进展。为了对猪骨骼肌生长发育有一个更为清晰的认识,该文将以目前猪骨骼肌生长发育研究结果为基础,同时结合模式动物小鼠骨骼肌单基因的研究成果,对猪的骨骼肌生长发育分子调控机理进行详细的阐述。  相似文献   

6.
Cellular heterogeneity during vertebrate skeletal muscle development   总被引:2,自引:0,他引:2  
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.  相似文献   

7.
8.
The differentiation program of skeletal muscle cells is exquisitely sensitive to secreted proteins. We developed a strategy to maximize the discovery of secreted proteins, using mass spectrometry-based proteomics, from cultured muscle cells, C2C12, grown in a serum-free medium. This strategy led to the identification of 80 nonredundant proteins, of which 27 were secretory proteins that were identified with a minimum of two tryptic peptides. A number of the identified secretory proteins are involved in extracellular matrix remodeling, cellular proliferation, migration, and signaling. A putative network of proteins involving matrix metalloproteinase 2, SPARC, and cystatin C that all interact with TGFbeta signaling has been postulated to contribute toward a functional role in the myogenic differentiation program.  相似文献   

9.
10.
11.
12.
13.
Regulation of satellite cells during skeletal muscle growth and development   总被引:7,自引:0,他引:7  
Satellite cells are myogenic cells attributed with the role of postnatal growth and regeneration in skeletal muscle. Following proliferation and subsequent differentiation, these cells will fuse with one another or with the adjacent muscle fiber, thereby increasing myonuclei numbers for fiber growth and repair. The potential factors which could regulate this process are many, including exercise, trauma, passive stretch, innervation, and soluble growth factors. Three classes of growth factors in particular (fibroblast growth factor, insulin-like growth factor, and transforming growth factor-beta) have been studied extensively with respect to their effects on satellite cell proliferation and differentiation in culture. Fibroblast growth factor has been shown to stimulate proliferation but depress differentiation. Insulin-like growth factor stimulates both proliferation and differentiation, although the latter to a much greater degree. Transforming growth factor-beta slightly depresses proliferation but inhibits differentiation. When administered in combination, these factors can induce satellite cell activities in culture which mimic those typical of satellite cells found in vivo in growing, regenerating, or healthy mature muscle. Alterations in the concentrations of these growth factors in the muscle environment as well as alterations in the cell's sensitivity or responsiveness to these factors represent potential mechanisms for regulating satellite cell activity in situ.  相似文献   

14.
15.
Changes in troponin components during development of chicken skeletal muscles have been investigated by using electrophoretic, immunoelectrophoretic, and immunoelectron microscopic methods. Previous reports (S. V. Perry and H. A. Cole, 1974, Biochem. J.141, 733–743; J. M. Wilkinson, 1978, Biochem. J.169, 229–238) pointed out that breast and leg muscles of adult chicken contain different types of troponin-T (TN-T), i.e., breast- and leg-type TN-T, respectively. However, the present paper indicates that the embryonic breast muscle contains leg-type TN-T. As development progresses two types of TN-T, i.e., breast- and leg-type TN-T, are found, and finally breast-type TN-T becomes the only species of TN-T present in the breast muscle. This change is well coordinated with the change of tropomyosin in the breast muscle. In contrast, the leg muscle contains leg-type TN-T through all the developmental stages. Leg-type TN-T is present in myogenic cells in vitro, irrespective of their origin, whether from the breast or leg muscle. The types of troponin-I and troponin-C in both breast and leg muscles do not change during development. The significance of the changes in the types of TN-T is discussed in terms of differential gene expression during development of chicken breast and leg muscles.  相似文献   

16.
17.
Skeletal myoblast fusion in vitro requires the expression of connexin43 (Cx43) gap junction channels. However, gap junctions are rapidly downregulated after the initiation of myoblast fusion in vitro and in vivo. In this study we show that this downregulation is accomplished by two related microRNAs, miR-206 and miR-1, that inhibit the expression of Cx43 protein during myoblast differentiation without altering Cx43 mRNA levels. Cx43 mRNA contains two binding sites for miR-206/miR-1 in its 3′-untranslated region, both of which are required for efficient downregulation. While it has been demonstrated before that miR-1 is involved in myogenesis, in this work we show that miR-206 is also upregulated during perinatal skeletal muscle development in mice in vivo and that both miR-1 and miR-206 downregulate Cx43 expression during myoblast fusion in vitro. Proper development of singly innervated muscle fibers requires muscle contraction and NMJ terminal selection and it is hypothesized that prolonged electrical coupling via gap junctions may be detrimental to this process. This work details the mechanism by which initial downregulation of Cx43 occurs during myogenesis and highlights the tight control mechanisms that are utilized for the regulation of gap junctions during differentiation and development.  相似文献   

18.
19.
The postnatal development of mammalian skeletal muscle is associated with an increased capacity for glycogenolysis. In the present study rabbit skeletal muscle underwent a 7-fold increase in glycogen synthase and glycogen phosphorylase activity over the postnatal period of 0--8 weeks. An enriched fraction of sarcolemma was prepared from neonatal and adult muscle to examine the development of the beta-adrenergic receptor-adenylate cyclase system. Adult membranes possessed a 2-fold greater Na+K+(Mg2+)-ATPase activity and a 6--8 fold greater sodium fluoride- and epinephrine-stimulated adenylate cyclase activity. The activation ratio (effector activity/basal activity) increased 2--3 fold for epinephrine and sodium fluoride in adult sarcolemma. The activation by catecholamines conformed to the physiological beta 2 type response with isoproterenol (1.8 . 10(-8) M) > epinephrine (1.1 . 10(-7) M) > norinephrine (3.2 . 10(-6) M). In contrast, binding studies employing (-)-[3H]dihydroalprenolol showed little difference between neonatal and adult membranes with respect to (1) number of binding sites, (2) equilibrium dissociation constant and (3) displacement of (-)-[3H]dihydroalprenolol by catecholamine agonists. Protein and lipid components of the sarcolemma were also modified during development. Neonatal membranes possessed two glycopeptides of Mr 80000 and 86000, whereas in the adult only a single Mr 113000 species was evident. The total lipid phosphorus and phospholipid composition was unchanged during development. The content of linoleic acid increased approx. 3-fold during development in the phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine phospholipids. The cholesterol content of adult membranes was decreased by 29% compared to neonatal membranes.  相似文献   

20.
N-RAP alternative splicing and protein localization were studied in developing skeletal muscle tissue from pre- and postnatal mice and in fusing primary myotubes in culture. Messages encoding N-RAP-s and N-RAP-c, the predominant isoforms of N-RAP detected in adult skeletal muscle and heart, respectively, were present in a 5:1 ratio in skeletal muscle isolated from E16.5 embryos. N-RAP-s mRNA levels increased three-fold over the first 3 weeks of postnatal development, while N-RAP-c mRNA levels remained low. N-RAP alternative splicing during myotube differentiation in culture was similar to the pattern observed in embryonic and neonatal muscle, with N-RAP-s expression increasing and N-RAP-c mRNA levels remaining low. In both developing skeletal muscle and cultured myotubes, N-RAP protein was primarily associated with developing myofibrillar structures containing alpha-actinin, but was not present in mature myofibrils. The results establish that N-RAP-s is the predominant spliced form of N-RAP present throughout skeletal muscle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号