首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on pancreatic acinar cells provided the original evidence for the Ca(2+) releasing action of inositol 1,4,5-trisphosphate (IP(3)). Ironically, this system has presented problems for the general theory that IP(3) acts primarily on the endoplasmic reticulum (ER), because the IP(3)-elicited Ca(2+) release occurs in the apical pole, which is dominated by zymogen granules (ZGs) and apparently contains very little ER. Using confocal and two-photon microscopy and a number of different ER-specific fluorescent probes, we have now investigated in detail the distribution of the ER in living pancreatic acinar cells. It turns out that although the bulk of the ER, as expected, is clearly located in the baso-lateral part of the cell, there is significant invasion of ER into the granular pole and each ZG is in fact surrounded by strands of ER. This structural evidence from living cells, in conjunction with recent functional studies demonstrating the high Ca(2+) mobility in the ER lumen, provides the framework for a coherent and internally consistent theory for cytosolic Ca(2+) signal generation in the apical secretory pole, in which the primary Ca(2+) release occurs from ER extensions in the granular pole supplied with Ca(2+) from the main store at the base of the cell by the tunnel function of the ER.  相似文献   

2.
Oxidative protein folding in the endoplasmic reticulum (ER) requires strict regulation of redox homeostasis. Disruption of the lumenal redox balance induces an integrated ER stress response that is associated with reduced protein translation, increased chaperone activity, and ultimately cell death. Imexon is a small-molecule chemotherapeutic agent that has been shown to bind glutathione (GSH) and induce oxidative stress in tumor cells; however, the mechanism of cytotoxicity is not well understood. In this report, we investigate the effects of imexon on the integrated ER stress response in pancreatic carcinoma cells. Acute exposure to imexon induces an ER stress response characterized by accumulation of the oxidized form of the oxidoreductase Ero1α, phosphorylation of eIF2α, and inhibition of protein synthesis. An RNA interference chemosensitization screen identified the eukaryotic translation initiation factor eIF2B5 as a target that enhanced imexon-induced growth inhibition of MiaPaCa-2 pancreatic cancer cells, but did not significantly augment the effects of imexon on protein synthesis. Concurrent reduction of intracellular thiols with N-acetyl cysteine reversed imexon activity, however cotreatment with superoxide scavengers had no effect, suggesting thiol binding may be a primary component of the oxidative effects of imexon. Moreover, the data suggest that disruption of the redox balance in the ER is a potential therapeutic target.  相似文献   

3.
4.
The endoplasmic reticulum (ER) is the cell organelle where secretory and membrane proteins are synthesized and folded. Correctly folded proteins exit the ER and are transported to the Golgi and other destinations within the cell, but proteins that fail to fold properly—misfolded proteins—are retained in the ER and their accumulation may constitute a form of stress to the cell—ER stress. Several signaling pathways, collectively known as unfolded protein response (UPR), have evolved to detect the accumulation of misfolded proteins in the ER and activate a cellular response that attempts to maintain homeostasis and a normal flux of proteins in the ER. In certain severe situations of ER stress, however, the protective mechanisms activated by the UPR are not sufficient to restore normal ER function and cells die by apoptosis. Most research on the UPR used yeast or mammalian model systems and only recently Drosophila has emerged as a system to study the molecular and cellular mechanisms of the UPR. Here, we review recent advances in Drosophila UPR research, in the broad context of mammalian and yeast literature.  相似文献   

5.
6.
The disposal of misfolded proteins from the lumen of the endoplasmic reticulum (ER) is one of the quality control mechanisms present in the protein secretory pathway. Through ER-associated degradation, misfolded substrates are targeted to the cytosol where they are degraded by the proteasome. We have identified four maize (Zea mays) Der1-like genes (Zm Derlins) that encode homologs of Der1p, a yeast (Saccharomyces cerevisiae) protein implicated in ER-associated degradation. Zm Derlins are capable of functionally complementing a yeast Der1 deletion mutant. Such complementation indicates that the Der1p function is conserved among species. Zm Derlin genes are expressed at low levels throughout the plant, but appear prevalent in tissues with high activity of secretory protein accumulation, including developing endosperm cells. Expression of three of the four Zm Derlin genes increases during ER stress, with Zm Derlin1-1 showing the strongest induction. Subcellular fractionation experiments localized Zm Derlin proteins to the membrane fraction of microsomes. In maize endosperm, Zm Derlin proteins were found primarily associated with ER-derived protein bodies regardless of the presence of an ER stress response.  相似文献   

7.
Canonical heterotrimeric G proteins in eukaryotes are major components that localize at plasma membrane and transmit extracellular stimuli into the cell. Genome of a seed plant Arabidopsis thaliana encodes at least one Gα (GPA1), one Gβ (AGB1), and 3 Gγ (AGG1, AGG2 and AGG3) subunits. The loss-of-function mutations of G protein subunit(s) cause multiple defects in development as well as biotic and abiotic stress responses. However, it remains elusive how these subunits differentially express these defects. Here, we report that Arabidopsis heterotrimeric G protein subunits differentially respond to the endoplasmic reticulum (ER) stress. An isolated homozygous mutant of AGB1, agb1-3, was more sensitive to the tunicamycin-induced ER stress compared to the wild type and the other loss-of-function mutants of G protein subunits. Moreover, ER stress responsive genes were highly expressed in the agb1-3 plant. Our results indicate that AGB1 positively contributes to ER stress tolerance in Arabidopsis.  相似文献   

8.
Viruses, endoplasmic reticulum stress, and interferon responses   总被引:1,自引:0,他引:1  
  相似文献   

9.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

10.
11.
Deferoxamine (DFA, N'-[5-(acetyl-hydroxy-amino)-pentyl]-N-[5-[3-(5-aminopentyl-hydroxy-carbamoyl) propanoylamino]pentyl]-N-hydroxy-butane diamide) is a chelating agent used to remove excess iron from the body and to reduce organ and tissue damage. DFA enhances both iron regulatory protein 1 (IRP1) expression and its endoplasmic reticulum (ER) membrane-binding activity, as occurs in hypoxia, an ER stress, in cultured cells. Here, we show that DFA promotes ER stress via an ER signal pathway.  相似文献   

12.
13.
In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues.  相似文献   

14.
Endoplasmic reticulum (ER) calcium signaling is implicated in a myriad of coordinated cellular processes. The ER calcium content is tightly regulated as it allows a favorable environment for protein folding, in addition to operate as a major reservoir for fast and specific release of calcium. Altered ER homeostasis impacts protein folding, activating the unfolded protein response (UPR) as a rescue mechanism to restore proteostasis. ER calcium release impacts mitochondrial metabolism and also fine-tunes the threshold to undergo apoptosis under chronic stress. The global coordination between UPR signaling and energetic demands takes place at mitochondrial associated membranes (MAMs), specialized subdomains mediating interorganelle communication. Here we discuss current models explaining the functional relationship between ER homeostasis and various cellular responses to coordinate proteostasis and metabolic maintenance.  相似文献   

15.
In guinea pig exocrine pancreatic cells intracisternal granules (ICGs) occur at a low frequency within the lumen of the RER. By starving and refeeding guinea pigs or injecting them in CoCl2 solution, the number of these granules is greatly increased. We show here that ICGs contain the complete set of secreted pancreatic digestive enzymes and proenzymes. Two other soluble proteins in the lumen of the RER, GRP 78/BiP and protein disulphide isomerase (PDI), are specifically excluded from ICGs. The formation of ICGs, which occurs without acidification of the RER cisternae, is therefore a sorting event involving the cocondensation of a complete set of secretory enzymes and proenzymes, which for brevity we refer to collectively as the zymogens. With the exception of approximately 50% of the RNase, the zymogens in ICGs are covalently cross-linked by intermolecular disulphide bonds. The synthesis of all three resident ER cisternal proteins--PDI, GRP 78/BiP, and GRP 94--with the carboxy-terminal sequence KDEL, is induced in response to the accumulation of massive amounts of misfolded secretory protein in the ICGs in the lumen of the RER. After injection of rats with large doses of parachlorophenylalanine-methylester, crystals form in the lumen of the RER. We show that these crystals appear to be a lattice of amylase with the other zymogens incorporated between the layers. Both GRP 78/BiP and PDI are excluded from these crystals. The formation of these amylase crystals within the RER and the inclusion of other zymogens is, therefore, also a sorting event. These data establish that in exocrine pancreatic cells zymogens can cocondense in the RER into either amorphous aggregates or crystals that exclude other soluble RER proteins. This demonstrates that cocondensation is a mechanism capable of sorting zymogens within the secretory pathway.  相似文献   

16.
When transport between the rough endoplasmic reticulum (ER) and Golgi complex is blocked by Brefeldin A (BFA) treatment or ATP depletion, the Golgi apparatus and associated transport vesicles undergo a dramatic reorganization. Because recent studies suggest that coat proteins such as beta-COP play an important role in the maintenance of the Golgi complex, we have used immunocytochemistry to determine the distribution of beta-COP in pancreatic acinar cells (PAC) in which ER to Golgi transport was blocked by BFA treatment or ATP depletion. In controls, beta-COP was associated with Golgi cisternae and transport vesicles as expected. Upon BFA treatment, PAC Golgi cisternae are dismantled and replaced by clusters of remnant vesicles surrounded by typical ER transitional elements that are generally assumed to represent the exit site of vesicular carriers for ER to Golgi transport. In BFA-treated PAC, beta-COP was concentrated in large (0.5-1.0 micron) aggregates closely associated with remnant Golgi membranes. In addition to typical ER transitional elements, we detected a new type of transitional element that consists of specialized regions of rough ER (RER) with ribosome-free ends that touched or extended into the beta-COP containing aggregates. In ATP-depleted PAC, beta-COP was not detected on Golgi membranes but was concentrated in similar large aggregates found on the cis side of the Golgi stacks. The data indicate that upon arrest of ER to Golgi transport by either BFA treatment or energy depletion, beta-COP dissociates from PAC Golgi membranes and accumulates as large aggregates closely associated with specialized ER elements. The latter may correspond to either the site of entry or exit for vesicles recycling between the Golgi and the RER.  相似文献   

17.
Lead (Pb) poisoning continues to be a significant health risk because of its pervasiveness in the environment, its known neurotoxic effects in children, and potential endogenous exposure from Pb deposited in bone. New information about mechanisms by which Pb enters cells and its organelle targets within cells are briefly reviewed. Toxic effects of Pb on the endoplasmic reticulum (ER) are considered in detail, based on recent evidence that Pb induces the expression of the gene for 78-kD glucose-regulated protein (GRP78) and other ER stress genes. GRP78 is a molecular chaperone that binds transiently to proteins traversing through the ER and facilitates their folding, assembly, and transport. Models are presented for the induction of ER stress by Pb in astrocytes, the major cell type of the central nervous system, in which Pb accumulates. A key feature of the models is disruption of GRP78 function by direct Pb binding. Possible pathways by which Pb-bound GRP78 stimulates the unfolded protein response (UPR) in the ER are discussed, specifically transduction by IRE1/ATF6 and/or IRE1/JNK. The effect of Pb binding to GRP78 in the ER is expected to be a key component for understanding mechanisms of Pb-induced ER stress gene expression.  相似文献   

18.
Enhanced endoplasmic reticulum (ER) stress leads to cell death in various pathophysiological situations. During a search for compounds that regulate ER stress, we identified methoxyflavones, a group of flavonoids, as strong protective agents against ER stress. Analysis in mouse insulinoma MIN6 cells revealed that methoxyflavones mildly activated the eukaryotic initiation factor 2 and nuclear factor erythroid 2-related factor pathways, but not the XBP1 pathway, and induced downstream genes, including glucose-regulated protein (GRP) 78, a molecular chaperone in the ER. The protective effect of methoxyflavones was enhanced by agents that increase intracellular cAMP levels such as forskolin, dibutyryl-cAMP and IBMX, but suppressed by the protein kinase A (PKA) inhibitor H-89, suggesting involvement of the PKA pathway in the regulation of ER stress by methoxyflavones. Consistent with the results in cultured cells, pretreatment of mice with tangeretin, a methoxyflavone, enhanced expression of GRP78 and HO-1 without causing ER stress in renal tubular epithelium and prevented tunicamycin-induced cell death. Furthermore, preadministration of tangeretin in mice enhanced expression of GRP78 in the substantia nigra pars compacta and protected dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin that induces both oxidative and ER stress. These results suggest that methoxyflavones play an important role in the regulation of ER stress and could be a therapeutic target for the ER stress-related diseases. neuronal degeneration; flavonoids  相似文献   

19.
Chronic exposure to elevated free fatty acids, in particular long chain saturated fatty acids, provokes endoplasmic reticulum (ER) stress and cell death in a number of cell types. The perturbations to the ER that instigate ER stress and activation of the unfolded protein in response to fatty acids in hepatocytes have not been identified. The present study employed H4IIE liver cells and primary rat hepatocytes to examine the hypothesis that saturated fatty acids induce ER stress via effects on ER luminal calcium stores. Exposure of H4IIE liver cells and primary hepatocytes to palmitate and stearate reduced thapsigargin-sensitive calcium stores and increased biochemical markers of ER stress over similar time courses (6 h). These changes preceded cell death, which was only observed at later time points (16 h). Co-incubation with oleate prevented the reduction in calcium stores, induction of ER stress markers and cell death observed in response to palmitate. Inclusion of calcium chelators, BAPTA-AM or EGTA, reduced palmitate- and stearate-mediated enrichment of cytochrome c in post-mitochondrial supernatant fractions and cell death. These data suggest that redistribution of ER luminal calcium contributes to long chain saturated fatty acid-mediated ER stress and cell death.  相似文献   

20.
内质网是分泌型蛋白和膜蛋白折叠及翻译后修饰的主要场所.病毒感染所引起的宿主细胞内环境的改变可使细胞或病毒的未折叠和/或错误折叠蛋白在内质网中大量聚集,使内质网处于生理功能紊乱的应激状态.为了缓解这种应激压力,细胞会启动未折叠蛋白反应(UPR),并通过一系列分子的信号转导维持内质网稳态;同时病毒也会通过对UPR的精密调控...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号