首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In spite of Argentina having one of the highest frequencies of haemolytic uraemic syndrome (HUS), the incidence of Escherichia coli O157:H7 is low in comparison to rates registered in the US. Isolation of several non-O157 shiga toxin-producing Escherichia coli (STEC) strains from cattle and foods suggests that E. coli O157:H7 is an uncommon serotype in Argentina. The present study was undertaken to compare the survival rates of selected non-O157 STEC strains under acidic and alcoholic stress conditions, using an E. coli O157:H7 strain as reference.

Results

Growth at 37°C of E. coli O26:H11, O88:H21, O91:H21, O111:H-, O113:H21, O116:H21, O117:H7, O157:H7, O171:H2 and OX3:H21, was found to occur at pH higher than 4.0. When the strains were challenged to acid tolerance at pH as low as 2.5, viability extended beyond 8 h, but none of the bacteria, except E. coli O91:H21, could survive longer than 24 h, the autochthonous E. coli O91:H21 being the more resistant serotype. No survival was found after 24 h in Luria Bertani broth supplemented with 12% ethanol, but all these serotypes were shown to be very resistant to 6% ethanol. E. coli O91:H21 showed the highest resistance among serotypes tested.

Conclusions

This information is relevant in food industry, which strongly relies on the acid or alcoholic conditions to inactivate pathogens. This study revealed that stress resistance of some STEC serotypes isolated in Argentina is higher than that for E. coli O157:H7.  相似文献   

2.

Background

Class 1 integrons contain genetic elements for site-specific recombination, capture and mobilization of resistance genes. Studies investigating the prevalence, distribution and types of integron located resistance genes are important for surveillance of antimicrobial resistance and to understand resistance development at the molecular level.

Methods

We determined the prevalence and genetic content of class 1 integrons in Enterobacteriaceae (strain collection 1, n = 192) and E. coli (strain collection 2, n = 53) from bloodstream infections in patients from six Norwegian hospitals by molecular techniques. Class 1 integrons were also characterized in 54 randomly selected multiresistant E. coli isolates from gastrointestinal human infections (strain collection 3).

Results

Class 1 integrons were present in 10.9% of the Enterobacteriaceae blood culture isolates of collection 1, all but one (S. Typhi) being E. coli. Data indicated variations in class 1 integron prevalence between hospitals. Class 1 integrons were present in 37% and 34% of the resistant blood culture isolates (collection 1 and 2, respectively) and in 42% of the resistant gastrointestinal E. coli. We detected a total of 10 distinct integron cassette PCR amplicons that varied in size between 0.15 kb and 2.2 kb and contained between zero and three resistance genes. Cassettes encoding resistance to trimethoprim and aminoglycosides were most common. We identified and characterized a novel plasmid-located integron with a cassette-bound novel gene (linF) located downstream of an aadA2 gene cassette. The linF gene encoded a putative 273 aa lincosamide nucleotidyltransferase resistance protein and conferred resistance to lincomycin and clindamycin. The deduced LinF amino acid sequence displayed approximately 35% identity to the Enterococcus faecium and Enterococcus faecalis nucleotidyl transferases encoded by linB and linB'

Conclusions

The present study demonstrated an overall low and stable prevalence of class 1 integron gene cassettes in clinical Enterobacteriaceae and E. coli isolates in Norway. Characterization of the novel lincosamide resistance gene extends the growing list of class 1 integron gene cassettes that confer resistance to an increasing number of antibiotics.  相似文献   

3.
Propionic acid (PA) is an economically important compound, but large-scale microbial production of PA confronts obstacle such as acid stress on microbial cells. Here, we show that overexpressing sigma factor RpoS improves the acid tolerance of Escherichia coli. Four genes including rpoS, fur, pgi and dnaK (encoding RNA polymerase sigma factor, ferric uptake regulator, phosphoglucoisomerase, and chaperone, respectively) were independently overexpressed in E. coli. The recombinant E. coli overexpressing rpoS showed the highest PA tolerance. This strain could grow in M9 medium at pH 4.62, whereas wild type E. coli survived only at pHs above 5.12. Moreover, in the shake-flask cultivation, the E. coli strain overexpressing rpoS grew faster than wild type. Notably, the minimum inhibitory concentration of PA for this recombinant strain was 7.81 mg/mL, which was 2-fold higher in comparison with wild type. Overall these results indicated that overexpression of sigma factor rpoS significantly enhanced E. coli tolerance to PA.  相似文献   

4.

Background

Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.

Results

For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.

Conclusions

The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.  相似文献   

5.

Background

The ability to react early to possible outbreaks of Escherichia coli O157:H7 and to trace possible sources relies on the availability of highly discriminatory and reliable techniques. The development of methods that are fast and has the potential for complete automation is needed for this important pathogen.

Methods

In all 73 isolates of shiga-toxin producing E. coli O157 (STEC) were used in this study. The two available fully sequenced STEC genomes were scanned for tandem repeated stretches of DNA, which were evaluated as polymorphic markers for isolate identification.

Results

The 73 E. coli isolates displayed 47 distinct patterns and the MLVA assay was capable of high discrimination between the E. coli O157 strains. The assay was fast and all the steps can be automated.

Conclusion

The findings demonstrate a novel high discriminatory molecular typing method for the important pathogen E. coli O157 that is fast, robust and offers many advantages compared to current methods.  相似文献   

6.

Objectives

To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli.

Results

We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coliE. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L.

Conclusions

Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
  相似文献   

7.
8.

Background

Eradication of Helicobacter pylori is an important objective in overcoming gastric diseases. Many regimens are currently available but none of them could achieve 100% success in eradication. Eugenol and cinnamaldehyde that are commonly used in various food preparations are known to possess antimicrobial activity against a wide spectrum of bacteria.

Aim

The present study was performed to assess the in vitro effects of eugenol and cinnamaldehyde against indigenous and standard H. pylori strains, their minimum inhibitory concentrations (MICs) and time course lethal effects at various pH.

Methods

A total of 31 strains (29 indigenous and one standard strain of H. pylori ATCC 26695, one strain of E. coli NCIM 2089) were screened. Agar dilution method was used for the determination of drug sensitivity patterns of isolates to the commonly used antibiotics and broth dilution method for the test compounds.

Results

Eugenol and cinnamaldehyde inhibited the growth of all the 30 H. pylori strains tested, at a concentration of 2 μg/ml, in the 9th and 12th hours of incubation respectively. At acidic pH, increased activity was observed for both the compounds. Furthermore, the organism did not develop any resistance towards these compounds even after 10 passages grown at sub-inhibitory concentrations.

Conclusion

These results indicate that the two bioactive compounds we tested may prevent H. pylori growth in vitro, without acquiring any resistance.  相似文献   

9.

Background

Hydrogen production by fermenting bacteria such as Escherichia coli offers a potential source of hydrogen biofuel. Because H2 production involves consumption of 2H+, hydrogenase expression is likely to involve pH response and regulation. Hydrogenase consumption of protons in E. coli has been implicated in acid resistance, the ability to survive exposure to acid levels (pH 2–2.5) that are three pH units lower than the pH limit of growth (pH 5–6). Enhanced survival in acid enables a larger infective inoculum to pass through the stomach and colonize the intestine. Most acid resistance mechanisms have been defined using aerobic cultures, but the use of anaerobic cultures will reveal novel acid resistance mechanisms.

Methods and Principal Findings

We analyzed the pH regulation of bacterial hydrogenases in live cultures of E. coli K-12 W3110. During anaerobic growth in the range of pH 5 to 6.5, E. coli expresses three hydrogenase isoenzymes that reversibly oxidize H2 to 2H+. Anoxic conditions were used to determine which of the hydrogenase complexes contribute to acid resistance, measured as the survival of cultures grown at pH 5.5 without aeration and exposed for 2 hours at pH 2 or at pH 2.5. Survival of all strains in extreme acid was significantly lower in low oxygen than for aerated cultures. Deletion of hyc (Hyd-3) decreased anoxic acid survival 3-fold at pH 2.5, and 20-fold at pH 2, but had no effect on acid survival with aeration. Deletion of hyb (Hyd-2) did not significantly affect acid survival. The pH-dependence of H2 production and consumption was tested using a H2-specific Clark-type electrode. Hyd-3-dependent H2 production was increased 70-fold from pH 6.5 to 5.5, whereas Hyd-2-dependent H2 consumption was maximal at alkaline pH. H2 production, was unaffected by a shift in external or internal pH. H2 production was associated with hycE expression levels as a function of external pH.

Conclusions

Anaerobic growing cultures of E. coli generate H2 via Hyd-3 at low external pH, and consume H2 via Hyd-2 at high external pH. Hyd-3 proton conversion to H2 is required for acid resistance in anaerobic cultures of E. coli.  相似文献   

10.

Background

Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer.

Methods

In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC). PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase), chloramphenicol (catI, catII, catIII and cml), tetracycline (tetA, tetB, tetC, tetD, tet E and tetG), and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17).

Results

The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR) was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p < 0.001). Resistance to ciprofloxacin and florfenicol were identified mostly within the MDR phenotypes. Resistance genes included dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279), 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8%) found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred.

Conclusions

Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance, MDR, antimicrobial use in veterinary medicine and the zoonotic risk that horses could potentially pose to public health.  相似文献   

11.

Background

Escherichia coli is the commonest cause of community and nosocomial urinary tract infection (UTI). Antibiotic treatment is usually empirical relying on susceptibility data from local surveillance studies. We therefore set out to determine levels of resistance to 8 commonly used antimicrobial agents amongst all urinary isolates obtained over a 12 month period.

Methods

Antimicrobial susceptibility to ampicillin, amoxicillin/clavulanate, cefalexin, ciprofloxacin, gentamicin, nitrofurantoin, trimethoprim and cefpodoxime was determined for 11,865 E. coli urinary isolates obtained from community and hospitalised patients in East London.

Results

Nitrofurantoin was the most active agent (94% susceptible), followed by gentamicin and cefpodoxime. High rates of resistance to ampicillin (55%) and trimethoprim (40%), often in combination were observed in both sets of isolates. Although isolates exhibiting resistance to multiple drug classes were rare, resistance to cefpodoxime, indicative of Extended spectrum β-lactamase production, was observed in 5.7% of community and 21.6% of nosocomial isolates.

Conclusion

With the exception of nitrofurantoin, resistance to agents commonly used as empirical oral treatments for UTI was extremely high. Levels of resistance to trimethoprim and ampicillin render them unsuitable for empirical use. Continued surveillance and investigation of other oral agents for treatment of UTI in the community is required.  相似文献   

12.

Background

The already high and increasing occurrence of extended-spectrum beta-lactamases (ESBL) producing Escherichia coli in European broiler populations is of concern due to the fact that third and fourth generation cephalosporins are deemed critically important in human medicine. In Sweden 34% of the broilers carry ESBL/pAmpC producing E. coli in their gut, despite the absence of a known selection pressure such as antimicrobial usages. The aim of the current study was to characterise a selection of E. coli strains carrying the bla CTX-M-1, to determine if the spread was due to a specific clone.

Findings

Ten isolates carrying bla CTX-M-1 from Swedish broilers belonged to eight different multi-locus sequence types with three isolates belonging to ST155. The ST155 isolates were identical as assessed by PFGE. The bla CTX-M-1 was in all isolates carried on a plasmid of replicon type incI, which also transferred resistance to tetracycline and sulfamethoxazole.

Conclusion

The occurrence of ESBL-producing E. coli in the Swedish broilers is not due to the emergence of a single clone, but rather the spread of a specific incI plasmid carrying bla CTX-M-1.  相似文献   

13.
14.

Background

Extended spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production in Klebsiella pneumoniae and Escherichia coli are the commonest modes of drug resistance among these commonly isolated bacteria from clinical specimens. So the main purpose of our study was to determine the burden of ESBL and MBL production in E. coli and K. pneumoniae isolated from clinical samples. Further, the antimicrobial susceptibility patterns of E. coli and K. pneumoniae were also determined.

Methods

A cross-sectional study was conducted at Om Hospital and Research Centre, Kathmandu, Nepal by using the E. coli and K. pneumoniae isolated from different clinical samples (urine, pus, body fluids, sputum, blood) from May 2015 to December 2015. Antimicrobial susceptibility testing was performed by Kirby-Bauer disc diffusion technique. Extended spectrum beta-lactamase production was detected by combined disc method using ceftazidime and ceftazidime/clavulanic acid discs and cefotaxime and cefotaxime/clavulanic acid discs. Similarly, metallo beta-lactamase production was detected by combined disc assay using imipenem and imipenem/ethylenediaminetetracetate discs. Bacteria showing resistance to at least three different classes of antibiotics were considered multidrug resistant (MDR).

Results

Of total 1568 different clinical samples processed, 268 (17.1%) samples were culture positive. Among which, E. coli and K. pneumoniae were isolated from 138 (51.5%) and 39 (14.6%) samples respectively. Of the total isolates 61 (34.5%) were ESBL producers and 7 (4%) isolates were found to be MBL producers. High rates of ESBL production (35.9%) was noted among the clinical isolates from outpatients, however no MBL producing strains were isolated from outpatients. Among 138 E. coli and 39 K. pneumoniae, 73 (52.9%) E. coli and 23 (59%) K. pneumoniae were multidrug resistant. The lowest rates of resistance was seen toward imipenem followed by piperacillin/tazobactam, amikacin and cefoperazone/sulbactam.

Conclusions

High rate of ESBL production was found in the E. coli and K. pneumoniae isolated from outpatients suggesting the dissemination of ESBL producing isolates in community. This is very serious issue and can’t be neglected. Regular monitoring of rates of ESBL and MBL production along with multidrug resistance among clinical isolates is very necessary.
  相似文献   

15.
16.

Objectives

To produce rosmarinic acid analogues in the recombinant Escherichia coli BLRA1, harboring a 4-coumarate: CoA ligase from Arabidopsis thaliana (At4CL) and a rosmarinic acid synthase from Coleus blumei (CbRAS).

Results

Incubation of the recombinant E. coli strain BLRA1 with exogenously supplied phenyllactic acid (PL) and analogues as acceptor substrates, and coumaric acid and analogues as donor substrates led to production of 18 compounds, including 13 unnatural RA analogues.

Conclusion

This work demonstrates the viability of synthesizing a broad range of rosmarinic acid analogues in E. coli, and sheds new light on the substrate specificity of CbRAS.
  相似文献   

17.

Background

We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates.

Methods

We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Bac light LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity.

Results

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates.

Conclusions

These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells.  相似文献   

18.

Background

The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) has increased recently. The aim of this study was to further characterise and to assess the occurrence of ESBL-EC in Riyadh, to use pulsed field gel electrophoresis (PFGE) typing to investigate the epidemiology of ESBL-EC and to determine the prevalence of ST131 in ESBL-EC.

Methods

A total of 152 E. coli isolates were collected at a tertiary hospital in Riyadh from September 2010 to June 2011. Genotypic and phenotypic methods were used to characterise ESBLs. PFGE was used to determine genetic relatedness. Detection of ST131 and CTX-M-like ESBLs was performed using real-time PCR.

Results

Of 152 strains, 31 were positive for ESBLs by phenotypic methods. The bla CTX-M-15 gene was highly prevalent (30/31 strains, 96.77%) among the 31 ESBL-positive E. coli strains. The bla CTX-M-27 gene was detected in one strain. Twenty (64.5%) out of 31 of ESBL-EC were ST131. PFGE revealed 29 different pulsotypes.

Conclusions

Our study documented the high prevalence of ESBLs in E. coli isolates, with CTX-M-15 as the predominant ESBL gene. ST131 clone producing CTX-M-15 has a major presence in our hospital. The high prevalence of CTX-M producers was not due to the spread of a single clone. To the best of our knowledge, this study represents the first report of CTX-M-15 and CTX-M-27 β-lactamases and the detection of the ST131 clone in Saudi E. coli isolates.  相似文献   

19.

Background

The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H+ transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown.

Methods and Principal Findings

TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 105-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5–6.0, but not at pH 6.5–8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5.

Conclusions

TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach.  相似文献   

20.

Background

Over the past fifteen years, antibiotic resistance in the Gram-positive opportunistic human pathogen Streptococcus pneumoniae has significantly increased. Clinical isolates from patients with community-acquired pneumonia or otitis media often display resistance to two or more antibiotics. Given the need for new therapeutics, we intend to investigate enzymes of cell wall biosynthesis as novel drug targets. Alanine racemase, a ubiquitous enzyme among bacteria and absent in humans, provides the essential cell wall precursor, D-alanine, which forms part of the tetrapeptide crosslinking the peptidoglycan layer.

Results

The alanine racemases gene from S. pneumoniae (alr SP ) was amplified by PCR and cloned and expressed in Escherichia coli. The 367 amino acid, 39854 Da dimeric enzyme was purified to electrophoretic homogeneity and preliminary crystals were obtained. Racemic activity was demonstrated through complementation of an alr auxotroph of E. coli growing on L-alanine. In an alanine racemases photometric assay, specific activities of 87.0 and 84.8 U mg-1 were determined for the conversion of D- to L-alanine and L- to D-alanine, respectively.

Conclusion

We have isolated and characterized the alanine racemase gene from the opportunistic human pathogen S. pneumoniae. The enzyme shows sufficient homology with other alanine racemases to allow its integration into our ongoing structure-based drug design project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号