首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The manufacture and use of a whole-genome microarray is a complex process and it is essential that all data surrounding the process is stored, is accessible and can be easily associated with the data generated following hybridization and scanning. As part of a program funded by the Wellcome Trust, the Bacterial Microarray Group at St. George's Hospital Medical School (BmuG@S) will generate whole-genome microarrays for 12 bacterial pathogens for use in collaboration with specialist research groups. BmuG@S will collaborate with these groups at all levels, including the experimental design, methodology and analysis. In addition, we will provide informatic support in the form of a database system (BmuG@Sbase). BmuG@Sbase will provide access through a web interface to the microarray design data and will allow individual users to store their data in a searchable, secure manner. Tools developed by BmuG@S in collaboration with specific research groups investigating analysis methodology will also be made available to those groups using the arrays and submitting data to BmuG@Sbase.  相似文献   

2.
Microarray technology has been widely adopted by researchers who use both home-made microarrays and microarrays purchased from commercial vendors. Associated with the adoption of this technology has been a deluge of complex data, both from the microarrays themselves, and also in the form of associated meta data, such as gene annotation information, the properties and treatment of biological samples, and the data transformation and analysis steps taken downstream. In addition, standards for annotation and data exchange have been proposed, and are now being adopted by journals and funding agencies alike. The coupling of large quantities of complex data with extensive and complex standards require all but the most small-scale of microarray users to have access to a robust and scaleable database with various tools. In this review, we discuss some of the desirable properties of such a database, and look at the features of several freely available alternatives.  相似文献   

3.
4.
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox   总被引:26,自引:0,他引:26  
High-throughput gene expression analysis has become a frequent and powerful research tool in biology. At present, however, few software applications have been developed for biologists to query large microarray gene expression databases using a Web-browser interface. We present GENEVESTIGATOR, a database and Web-browser data mining interface for Affymetrix GeneChip data. Users can query the database to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs. Reversely, mining tools allow users to identify genes specifically expressed during selected stresses, growth stages, or in particular organs. Using GENEVESTIGATOR, the gene expression profiles of more than 22,000 Arabidopsis genes can be obtained, including those of 10,600 currently uncharacterized genes. The objective of this software application is to direct gene functional discovery and design of new experiments by providing plant biologists with contextual information on the expression of genes. The database and analysis toolbox is available as a community resource at https://www.genevestigator.ethz.ch.  相似文献   

5.
Data analysis and management represent a major challenge for gene expression studies using microarrays. Here, we compare different methods of analysis and demonstrate the utility of a personal microarray database. Gene expression during HIV infection of cell lines was studied using Affymetrix U-133 A and B chips. The data were analyzed using Affymetrix Microarray Suite and Data Mining Tool, Silicon Genetics GeneSpring, and dChip from Harvard School of Public Health. A small-scale database was established with FileMaker Pro Developer to manage and analyze the data. There was great variability among the programs in the lists of significantly changed genes constructed from the same data. Similarly choices of different parameters for normalization, comparison, and standardization greatly affected the outcome. As many probe sets on the U133 chip target the same Unigene clusters, the Unigene information can be used as an internal control to confirm and interpret the probe set results. Algorithms used for the determination of changes in gene expression require further refinement and standardization. The use of a personal database powered with Unigene information can enhance the analysis of gene expression data.  相似文献   

6.
Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.  相似文献   

7.
8.
BarleyExpress is a web-based microarray experiment data submission tool for BarleyBase, a public data resource of Affymetrix GeneChip data for plants. BarleyExpress uses the Plant Ontology vocabularies and enhances the MIAME guidelines to standardize the annotation of microarray gene expression experiments. In addition, BarleyExpress provides explicit support for factorial experiment design and template loading methods to ease the submission process for large experiments. AVAILABILITY: http://barleybase.org SUPPLEMENTARY INFORMATION: BarleyExpress Users Manual.  相似文献   

9.
Microarrays allow monitoring of gene expression for tens of thousands of genes in parallel and are being used routinely to generate huge amounts of valuable data. Handling and analysis of such data are becoming major bottlenecks in the utilization of the technology. To enable the researcher to interpret the results postanalysis, we have developed a laboratory information management system for microarrays (LIMaS) with an n-tier Java front-end and relational database to record and manage large-scale expression data preanalysis. This system enables the laboratory to replace the paper trail with an efficient and fully customizable interface giving it the ability to adapt to any working practice, e.g., handling many resources used to form many products (chaining of resources). The ability to define sets of activities, resources, and workflows makes LIMaS MIAME-supportive.LIMaS is available for download at (http://www.mgu.har.mrc.ac.uk/microarray.)  相似文献   

10.
11.
SUMMARY: ProbeMatchDB is a web-based database designed to facilitate the search of EST/cDNA sequences or STS markers that can be used to represent the same gene across different microarray platforms and species. It can be used for finding equivalent EST clones in the Research Genetics sequence verified clone set based on results from Affymetirx GeneChips. It will also help to identify probes representing orthologous genes across human, mouse and rat on different microarray platforms. AVAILABILITY: The database is accessible at http://brainarray.mhri.med.umich.edu/MARRAY/BC_ASP/brainarray.htm by clicking the 'Query ProbeMatchDB' link.  相似文献   

12.
13.
14.
We have built a microarray database, StressDB, for management of microarray data from our studies on stress-modulated genes in Arabidopsis. StressDB provides small user groups with a locally installable web-based relational microarray database. It has a simple and intuitive architecture and has been designed for cDNA microarray technology users. StressDB uses Windows(trade mark) 2000 as the centralized database server with Oracle(trade mark) 8i as the relational database management system. It allows users to manage microarray data and data-related biological information over the Internet using a web browser. The source-code is currently available on request from the authors and will soon be made freely available for downloading from our website athttp://arastressdb.cac.psu.edu.  相似文献   

15.
Tsai J  Sultana R  Lee Y  Pertea G  Karamycheva S  Antonescu V  Cho J  Parvizi B  Cheung F  Quackenbush J 《Genome biology》2001,2(11):software0002.1-software00024
Microarray expression analysis is providing unprecedented data on gene expression in humans and mammalian model systems. Although such studies provide a tremendous resource for understanding human disease states, one of the significant challenges is cross-referencing the data derived from different species, across diverse expression analysis platforms, in order to properly derive inferences regarding gene expression and disease state. To address this problem, we have developed RESOURCERER, a microarray-resource annotation and cross-reference database built using the analysis of expressed sequence tags (ESTs) and gene sequences provided by the TIGR Gene Index (TGI) and TIGR Orthologous Gene Alignment (TOGA) databases [now called Eukaryotic Gene Orthologs (EGO)].  相似文献   

16.
Alternative splicing generates functional diversity in higher organisms through alternative first and last exons, skipped and included exons, intron retentions and alternative donor, and acceptor sites. In large-scale microarray studies in humans and the mouse, emphasis so far has been placed on exon-skip events, leaving the prevalence and importance of other splice types largely unexplored. Using a new human splice variant database and a genome-wide microarray to probes thousands of splice events of each type, we measured differential expression of splice types across six pair of diverse cell lines and validated the database annotation process. Results suggest that splicing in humans is more complex than simple exon-skip events, which account for a minority of splicing differences. The relative frequency of differential expression of the splice types correlates with what is found by our annotation efforts. In conclusion, alternative splicing in human cells is considerably more complex than the canonical example of the exon skip. The complementary approaches of genome-wide annotation of alternative splicing in human and design of genome-wide splicing microarrays to measure differential splicing in biological samples provide a powerful high-throughput tool to study the role of alternative splicing in human biology.  相似文献   

17.

Background

With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps.

Results

We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies.

Conclusions

Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.  相似文献   

18.
The apoptosis database is a public resource for researchers and students interested in the molecular biology of apoptosis. The resource provides functional annotation, literature references, diagrams/images, and alternative nomenclatures on a set of proteins having 'apoptotic domains'. These are the distinctive domains that are often, if not exclusively, found in proteins involved in apoptosis. The initial choice of proteins to be included is defined by apoptosis experts and bioinformatics tools. Users can browse through the web accessible lists of domains, proteins containing these domains and their associated homologs. The database can also be searched by sequence homology using basic local alignment search tool, text word matches of the annotation, and identifiers for specific records. The resource is available at http://www.apoptosis-db.org and is updated on a regular basis.  相似文献   

19.
20.
The EMOTIF database is a collection of more than 170 000 highly specific and sensitive protein sequence motifs representing conserved biochemical properties and biological functions. These protein motifs are derived from 7697 sequence alignments in the BLOCKS+ database (released on June 23, 2000) and all 8244 protein sequence alignments in the PRINTS database (version 27.0) using the emotif-maker algorithm developed by Nevill-Manning et al. (Nevill-Manning,C.G., Wu,T.D. and Brutlag,D.L. (1998) Proc. Natl Acad. Sci. USA, 95, 5865-5871; Nevill-Manning,C.G., Sethi,K.S., Wu,T. D. and Brutlag,D.L. (1997) ISMB-97, 5, 202-209). Since the amino acids and the groups of amino acids in these sequence motifs represent critical positions conserved in evolution, search algorithms employing the EMOTIF patterns can identify and classify more widely divergent sequences than methods based on global sequence similarity. The emotif protein pattern database is available at http://motif.stanford.edu/emotif/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号