首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carboxypeptidase M, a widely distributed membrane-bound carboxypeptidase that can regulate peptide hormone activity, was purified to homogeneity from human placenta (Skidgel, R. A., Davis, R. M., and Tan, F. (1989) J. Biol. Chem. 264, 2236-2241). The NH2-terminal 31 amino acids were sequenced, and two complementary oligonucleotide probes were synthesized and used to isolate a carboxypeptidase M clone from a human placental cDNA library. Sequencing of the cDNA insert (2009 base pairs) revealed an open reading frame of 1317 base pairs coding for a protein of 439 residues. The NH2-terminal protein sequence matched the deduced amino acid sequence starting with residue 14. Hydropathic analysis revealed hydrophobic regions at the NH2 and COOH termini. The NH2-terminal 13 amino acids probably represent part of the signal peptide, and the COOH-terminal hydrophobic region may act either as a transmembrane anchor or as a signal for attachment to a phosphatidylinositol glycan moiety. The carboxypeptidase M sequence contains six potential Asn-linked glycosylation sites, consistent with its glycoprotein nature. The sequence of carboxypeptidase M was 41% identical with that of the active subunit of human plasma carboxypeptidase N, 41% identical with bovine carboxypeptidase H (carboxypeptidase E, enkephalin convertase), and 15% with either bovine pancreatic carboxypeptidase A or B. Many of the active site residues identified in carboxypeptidases A and B, including all of the zinc-binding residues (2 histidines and a glutamic acid), are conserved in carboxypeptidase M. These data indicate that all of the metallocarboxypeptidases are related, but the nondigestive carboxypeptidases with more specialized functions, present in cell membranes, blood plasma, or secretory granules (i.e., carboxypeptidase M, carboxypeptidase N and carboxypeptidase H), are more closely related to each other (41-49% identity) than they are to carboxypeptidase A or B (15-20% identity).  相似文献   

2.
D C Fry  K G Strothkamp 《Biochemistry》1983,22(21):4949-4953
Irradiation of Agaricus bisporus tyrosinase in the presence of citrate at pH 5.6 with 300-420-nm light results in a loss of both catecholase activity and cresolase activity. The light-sensitive species appears to be an enzyme-citrate complex, most likely involving coordination of citrate to the active site copper. One copper ion from each binuclear active site can be removed from the inactivated enzyme, resulting in the formation of a met apo derivative. The electron spin resonance spectrum of met apo tyrosinase resembles that of met apo hemocyanin and half-met Neurospora tyrosinase. It is consistent with a distorted square-planar geometry around the copper and with either nitrogen or nitrogen and oxygen ligands. Amino acid analysis indicates that four histidines on the heavy subunit are destroyed during the inactivation process. Some or all of these histidines may serve as ligands to the copper ion which becomes labile after inactivation. Photoinactivation results in decarboxylation of citrate and does not require the presence of oxygen. The reaction may involve generation of a free radical from the citrate which then attacks nearby histidine residues.  相似文献   

3.
The complete amino acid sequences of a pair of tilapia (Oreochromis mossambicus) prolactins (PRLs) were determined. The larger PRL of molecular mass 20,836 Da consists of 188 amino acid residues. The smaller PRL of molecular mass 19,584 Da is 11 residues shorter. On alignment of the two sequences, the 19.6-kDa PRL (tPRL177) has two conspicuous deletions on the NH2-terminal side of the disulfide bond which connects the first and second cysteine residues. The degree of similarity between the two PRL sequences is unexpectedly low (130 identical residues, 69%) compared with that between the variants of other teleostean PRLs. Circular dichroism spectra and hydropathy profiles suggest structural similarity of the two PRLs. The sequence of the 20.8-kDa PRL (tPRL188) has 69% identity with that of salmon PRL. The sequence of tPRL177 is 56% identical with that of salmon PRL. Each tilapia PRL is equally similar to mammalian PRLs (about 30% identical residues). Regions highly conserved among teleostean and mammalian PRLs were identified on the COOH-terminal side of the disulfide bond connecting the first and second cysteine residues.  相似文献   

4.
We report here that complement receptor type one (CR1) binds to a region of C3b that is contained within the NH2 terminus of the alpha' chain. In an enzyme-linked immunosorbent assay, CR1 bound to C3b, iC3b, and C3c but not to C3d, and this binding was inhibited by soluble C3b and C3c. Further attempts to generate a small C3 fragment capable of binding CR1 were unsuccessful. However, elastase degradation of C3 generated four species of C3c (C3c I-IV), two of which bound CR1. NH2-terminal sequence analysis and sodium dodecyl sulfate-gel electrophoresis of the C3cs indicated that the beta chains and the 40,000-dalton COOH-terminal alpha' chain fragments were identical; the NH2-terminal alpha' chain fragments of C3c I-IV varied from 21,000 to 27,000 daltons and accounted for the differential binding to CR1. C3c-I and II, which do not bind CR1, were missing 8 and 9 residues from the NH2 terminus of the alpha' chain when compared with the intact alpha' chain of C3b. C3c-III and IV, which bind CR1, had NH2 termini identical to the intact NH2-terminal alpha' chain of C3b. Using iodinated concanavalin A and endoglycosidase H, we showed that the NH2-terminal alpha' chains of C3c-I and III were glycosylated, while C3c-II and IV were not. Therefore, these data indicated that the amino terminus of the NH2-terminal alpha' chain fragment of C3c was responsible for binding CR1 while the COOH terminus of this fragment was not involved since the presence or absence of this region in C3c did not affect CR1 binding to C3c. Subsequently, two peptides were synthesized from the NH2-terminal alpha' chain fragment of C3c: X42, 42 residues in length from the NH2 terminus and C30, 30 residues in length from the COOH terminus. X42 inhibited binding of CR1 to C3b, and this effect was also observed with antipeptide antibodies against the X42 peptide. The C30 and other C3-derived peptides and antipeptide antibodies had no effect on the binding of CR1 to C3b.  相似文献   

5.
Characterization of human C4a anaphylatoxin   总被引:2,自引:0,他引:2  
Human C4a anaphylatoxin was isolated from a Cls digest of the fourth component of complement. Isolation required a two-step procedure involving ion-exchange chromatography on CM-Sephadex C-50 and gel filtration on Sephadex G-50. Characterization of C4a indicated it is a highly cationic polypeptide (pI = 9.0-9.5) containing 77 residues with Mr = 8,759. C4a is devoid of tryptophan, histidine, and carbohydrate. Judged by the shape and magnitude of its circular dichroism spectrum, 54% of the polypeptide backbone of C4a assumes an alpha-helical conformation. Partial NH2-terminal sequence determination of C4a revealed a sequence identical with that published by Bolotin et al. (Bolotin, C., Morris, S., Tack, B., and Prahl, J. (1977) Biochemistry 16, 2008-2015) for the NH2 terminus of the alpha-subunit of human C4. Comparison of the NH2-terminal sequence of C4a with the sequences of complement activation fragments C3a (Hugli, T.E. (1975) J. Biol. Chem. 250, 8293-8301) and C5a (Fernandez, H.N., and Hugli, T.E. (1978) J. Biol. Chem, 253-6955-6962) showed that of the first 24 NH2-terminal residues of C4a, 6 were identical with those of C3a (25% homology) and 8 were identical with those of C5a (33% homology). These data represent the first chemical evidence for the existence of an evolutionary relationship among anaphylatoxins C3a, C4a, and C5a, and imply that a similar relationship exists among their precursor proteins.  相似文献   

6.
We have determined the nucleotide sequence of a 1075-base-pair HindIII fragment of the T4 phage genome. This fragment contains the structural gene (frd) for dihydrofolate reductase and part of the gene (td) encoding thymidylate synthase. The fragment contains a 579-base-pair open reading frame, encoding a 193-residue polypeptide with a calculated mass of 21,603 Da, in agreement with our reported subunit molecular mass of 23,000. The deduced amino acid sequence shows partial homology with other dihydrofolate reductases, with most of the identities lying in regions known to be involved in substrate binding and catalysis. The 3' end of the coding strand overlaps the coding region for thymidylate synthase; the sequence - ATGA -includes an opal terminator for the frd gene and an initiating triplet for the td gene. The deduced amino acid sequence from this initiating ATG is identical, for the first 20 residues, with the NH2-terminal 20 residues reported for the td protein (M. Belfort , A. Moelleken , G. F. Maley , and F. Maley (1983) J. Biol. Chem. 258, 2045-2051). The sequenced HindIII fragment was transferred into a high expression plasmid vector for large scale production of homogeneous T4 dihydrofolate reductase. The experimentally determined sequence of 20 residues at the NH2-terminus of this protein is identical with that deduced from the nucleotide sequence for T4 dihydrofolate reductase.  相似文献   

7.
The amino acid sequence of the largest fragment, CNBr Ia (203 residues) has been reported (Yokota, E., and Riggs, A. F. (1984) J. Biol. Chem. 259, 4739-4749). The amino acid sequences of the second largest fragment, CNBr Ib (142 residues), and of the 12 smaller fragments are reported in accompanying papers (Moore, M. D., Behrens, P. Q., and Riggs, A. F. (1986) J. Biol. Chem. 261, 10511-10519; Behrens, P. Q., Nakashima, H., and Riggs, A. F. (1986) J. Biol. Chem. 261, 10520-10525). The complete amino acid sequence of hemocyanin component II has been established by isolation and analysis of 13 methionine-containing peptides from either a tryptic digest or a Staphylococcus aureus strain V8 protease digest of whole carboxamidomethylated hemocyanin II. Hemocyanin II is composed of 628 residues and has a molecular weight with two copper atoms of 72,946.  相似文献   

8.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

9.
The cyanogen bromide fragment, N-DSK, containing the NH2-terminal portions of the three chains of fibrinogen, was found to exist in dimeric and polymeric forms. These different forms gave rise to identical chain fragments on reduction and alkylation. The B beta chain of N-DSK from fibrinogen and the beta chain of N-DSK from fibrin were isolated and characterized. The B beta chain fragment has a blocked NH2-terminal residue, and fibrinopeptide B is released on digestion with thrombin. The beta chain fragment has glycine as NH2-terminal residue. The molecular weight of the B beta chain fragment is 12200 as determined by ultracentrifugal analysis. Gel electrophoresis in sodium dodecyl sulphate gave the molecular weights of 14000 and 13000 for the B beta chain and beta chain fragments, respectively. The NH2-terminal B beta chain fragment consists of 118 amino acid residues and the beta chain fragment of 104 residues. The amino acid sequence of beta chain fragment is identical to B beta chain fragment except for the fibrinopeptide B portion. The isolation of a B beta-related fragment (B beta +), with a molecular weight of 30000, is also reported. The presence of B beta + was explained on the basis of incomplete cleavage at the Met-118 residue during treatment with cyanogen bromide. Some functional aspects of the B beta chain fragment are discussed.  相似文献   

10.
The amino acid sequence of Acanthamoeba profilin   总被引:15,自引:0,他引:15  
The complete amino acid sequence of Acanthamoeba profilin was determined by aligning tryptic, chymotryptic, thermolysin, and Staphylococcus aureus V8 protease peptides together with the partial NH2-terminal sequences of the tryptophan-cleavage products. Acanthamoeba profilin contains 125 amino acid residues, is NH2-terminally blocked, and has trimethyllysine at position 103. At five positions in the sequence two amino acids were identified indicating that the amoebae express at least two slightly different profilins. Charged residues are unevenly distributed, the NH2-terminal half being very hydrophobic and the COOH-terminal half being especially rich in basic residues. Comparison of the Acanthamoeba profilin sequence with that of calf spleen profilin (Nystrom, L. E., Lindberg, U., Kendrick-Jones, J., and Jakes, R. (1979) FEBS Lett. 101, 161-165) reveals homology in the NH2-terminal region. We suggest, therefore, that this region participates in the actin-binding activity.  相似文献   

11.
Coagulation factor Va is a cofactor which combines with the serine protease factor Xa on a phospholipid surface to form the prothrombinase complex. The phospholipid-binding domain of bovine factor Va has been reported to be located on the light chain of the molecule and more precisely on a fragment of Mr = 30,000 which is obtained after digestion of factor Va light chain by factor Xa. This proteolytic fragment is located in the NH2-terminal part of factor Va light chain (residues 1564-1765). In order to further characterize the lipid-binding domain of bovine factor Va, isolated bovine light chain was preincubated with synthetic phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine) and digested with trypsin, chymotrypsin, and elastase. Two peptide regions protected from proteolytic cleavage were identified and characterized from each proteolytic digestion. A comparison of the NH2-terminal sequence and amino acid composition of the two tryptic peptides with the deduced sequence of human factor V indicates a match with residues 1657-1791 of the light chain of human factor V for one peptide and residues 1546-1656 for the other peptide. When chymotrypsin or elastase were used for digestion, the NH2-terminal sequence of one peptide showed a match with residues 1667-1797 of the light chain, while the other peptide presented an NH2-terminal sequence identical with the previously described for the bovine factor Va light chain. When these peptides were assayed for direct binding to phospholipid vesicles, only the tryptic and the chymotryptic peptides covering the middle region of the A3 domain of the bovine factor Va light chain demonstrated an ability to interact with phospholipid vesicles. Thus, knowing that the factor Xa cleavage site on the factor Va light chain is located between residues 1765 and 1766 of the light chain this lipid-binding region of the bovine factor Va is further localized to amino acid residues 1667-1765.  相似文献   

12.
Chicken gizzard beta-tropomyosin has the same chain length (284 residues) as other muscle tropomyosins, and is most closely related to the beta component of rabbit skeletal muscle. The majority of the amino acid substitutions are restricted to two regions of the structure, residues 185-216 and 258-284. The altered sequences at the COOH-terminal ends (residue 258-284) of the two gizzard components are very similar to each other and to those in platelet tropomyosin and can be correlated with the reduced affinity of interaction of all three tropomyosins with skeletal troponin T and its T1 fragment. The virtually identical NH2-terminal sequences of all four muscle tropomyosin chains indicates that the gizzard proteins' greater ability to polymerize head-to-tail is due to the sequence changes at its COOH terminus. On the other hand, the weaker head-to-tail aggregation of the platelet protein must be due to its NH2-terminal sequence alterations. Examination of the distribution of amino acids and the frequency of their substitution in the a to g positions of the repeating pseudoheptapeptide for all five tropomyosin sequences (four muscle and one platelet) emphasizes the importance of Glu residues at position e. Examination of those features of the muscle sequences implicated in the stabilization of their coiled-coil structures and in their interactions with F-actin suggest only marginal differences among them, with the possible exception of the chicken gizzard gamma component.  相似文献   

13.
Fragment D has been isolated as an apparently single molecular weight species (molecular weight about 100,000) from plasmin digests of humman fibrinogen, using a combination of affinity chromatography on insolubilized "fibrin monomer" and gel filtration. This fragment consists of three chains with molecular weights of 15,000 (Dbeta), 42,500 (Dgamma1) or 39,500 (Dgamma2), and 14,000 (Dalpha) held together by disulfide bonds. The S-carboxymethyl derivatives of the chains have been separated by gel filtration and ion exchange chromatography, and their identity has been confirmed by peptide mapping and immunological analysis. The chain with a molecular weight of 45,000 is a fragment of the Bbeta chain of fibrinogen. The chain derived from the gamma chain of fibrinogen occurred in two molecular forms having molecular weight 42,500 and 39,500. The chain derivative with molecular weight 14,000 is most likely derived from the Aalpha chain of fibrinogen. The chains were characterized by NH2-terminal sequence analysis, amino acid composition, and carbohydrate staining. The two molecular analysis, amino acid composition, and carbohydrate staining. The two molecular forms of the gamma chain appeared to be identical except for an NH2-terminal peptide extension of 23 amino acid residues in the longer chain. The latter has sequences in common with the COOH-terminal part of the gamma chain of the NH2-terminal disulfide knot (BROMBACK, B., BRONDAHL, N. J., HESSEL, B., IWANAGA, S., and WALLEN, P. (1973) J. Biol. Chem. 248, 5806-5820); its NH2-terminal residue being Ala-63 of the gamma chain of fibrinogen.  相似文献   

14.
The copper-binding site of lysyl oxidase remains extremely poorly characterized and although models have been suggested for copper(II) coordination by three histidine ligands, as has been found for other copper-containing amine oxidases, there has been no experimental confirmation of these suggestions. In this work, two synthetic peptides with 24 and 34-amino acid residues, respectively, were chosen from the highly conserved histidine-rich sequence previously suggested as the copper-binding region of lysyl oxidase. These peptides each bind one equivalent of Cu(II), at the same site in the two peptides. Spectroscopic (NMR, electron paramagnetic resonance (EPR), CD, visible absorption and fluorescence) techniques were employed to investigate the nature of the resulting complexes. The results indicate that at neutral pH three histidine ring nitrogen atoms and one carboxylate oxygen atom coordinate as the in-plane ligands of the copper, which is in an approximately tetragonally-distorted octahedral geometry. Modeling of the copper-peptides using the consistent force field (CFF91) produces a minimum energy configuration with three histidines and one water molecule as the copper ligands. CD, EPR and fluorescence results are reported for lysyl oxidase and compared with results for the peptides.  相似文献   

15.
Three chymotryptic fragments accounting for almost the entire amino acid sequence of gizzard calponin (Takahashi, K., and Nadal-Ginard, B. (1991) J. Biol. Chem. 266, 13284-13288) were isolated and characterized. They encompass the segments of residues 7-144 (NH2-terminal 13-kDa peptide), 7-182 (NH2-terminal 22-kDa peptide), and 183-292 (COOH-terminal 13-kDa peptide). They arise from the sequential hydrolysis of the peptide bonds at Tyr182-Gly183 and Tyr144-Ala145 which were protected by the binding of F-actin to calponin. Only the NH2-terminal 13- and 22-kDa fragments were retained by immobilized Ca(2+)-calmodulin, but only the larger 22 kDa entity cosedimented with F-actin and inhibited, in the absence of Ca(2+)-calmodulin, the skeletal actomyosin subfragment-1 ATPase activity as the intact calponin. Since the latter peptide differs from the NH2-terminal 13-kDa fragment by a COOH-terminal 38-residue extension, this difference segment appears to contain the actin-binding domain of calponin. Zero-length cross-linked complexes of F-actin and either calponin or its 22-kDa peptide were produced. The total CNBr digest of the F-actin-calponin conjugate was fractionated over immobilized calmodulin. The EGTA-eluted pair of cross-linked actin-calponin peptides was composed of the COOH-terminal actin segment of residues 326-355 joined to the NH2-terminal calponin region of residues 52-168 which seems to contain the major determinants for F-actin and Ca(2+)-calmodulin binding.  相似文献   

16.
Previous studies of the amino acid sequence of the NAD-specific glutamate dehydrogenase of Neurospora crassa (EC 1.4.1.2) resulted in the assignments of peptides to four fragments, the longest being the COOH-terminal 669 residues of the protein. A further study of peptides derived by cyanogen bromide cleavage by different separation methods has yielded additional peptides that have provided new information concerning the sequence and has given overlaps of previously known sequences. This has permitted establishment of 313 residues in one sequence (fragment II). This is in addition to a sequence of 43 residues (fragment I) at the NH2-terminal end and a sequence of 669 residues (fragment III) previously established at the COOH-terminal end of the molecule. The present status of our knowledge of the overall sequence is given in the accompanying papers, together with some views regarding the conformation of the protein (Haberland, M.E., Chen, C.-W., and Smith, E.L. (1980) J. Biol. Chem. 255, 7993-8000, and Austen, B.M., Haberland, M.E., and Smith, E.L. (1980) J. Biol. Chem. 255, 8001-8004).  相似文献   

17.
A secretory expression system for Streptomyces subtilisin inhibitor (SSI) was established in a heterologous host, Streptomyces lividans 66, by introducing the 1.8-kbp BglII/SalI fragment containing SSI gene into the Streptomyces multicopy vector, pIJ 702. The expression of SSI did not depend on the orientation of the 1.8-kbp BglII/SalI fragment or on the promoter for tyrosinase gene (mel) in pIJ 702, which suggested that this fragment also carries the SSI promoter. The expressed SSI in S.lividans 66 was secreted into the culture medium in a large amount, as observed with the original strain, S. albogriseolus S-3253. Amino acid sequence analysis showed that the SSI secreted from S. lividans 66 contained three additional amino acid residues in the NH2-terminal region. The inhibitory activity toward subtilisin BPN' and the antigenic activity of the SSI secreted from S. lividans 66 were found to be identical with those of authentic SSI.  相似文献   

18.
The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u-PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported. The protein has a high content of cysteine residues. The NH2-terminal sequence is not closely related to any known sequence. The identification of the purified and sequenced protein with the human u-PA receptor is based on the following findings: 1) the ability of the purified protein to bind u-PA and its amino-terminal fragment; 2) the identical electrophoretic mobilities observed for cross-linked conjugates, formed between either the purified protein or the u-PA receptor on intact U937 cells and the above ligands; 3) the identity of the apparent molecular weight of the purified protein to that predicted for the u-PA receptor in the same cross-linking studies; 4) the identical extent of glycosylation of the purified protein and of the u-PA receptor in crude membrane fractions, as detected after cross-linking; 5) the ability of antibodies raised against the purified protein to inhibit cellular binding of the amino-terminal fragment of u-PA.  相似文献   

19.
Prion diseases are associated with conformational change in the copper-binding protein PrP. The copper-binding sites in PrP are located in the N-terminal region of the molecule and comprise a series of tandem repeats of the sequence PHGGGWGQ together with two histidines at residues 96 and 111 (human PrP numbering). The co-ordination of copper ions within the non-octapeptide repeat metal ion-binding site involves Met109 (human numbering, which corresponds with Met112 in ovine PrP) and the binding of copper to this site leads to an increase in beta-sheet formation in PrP. Here we have investigated the influence of the M112T polymorphism on copper-induced structural changes in ovine recombinant PrP. M112ARQ and T112ARQ ovine PrP show similar secondary structure although M112ARQ appears more thermostable than T112ARQ. Following treatment with copper, M112ARQ showed a greater increase in beta-sheet content than did T112ARQ when measured by CD spectroscopy and by ELISA using anti-PrP monoclonal antibodies. These biochemical and biophysical differences between M112ARQ and T112ARQ correlate with similar differences seen between allelic variants of ovine PrP associated with susceptibility and resistance to classical scrapie. These observations suggest that T112ARQ may provide a measure of resistance to classical scrapie pathogenesis compared to M112ARQ.  相似文献   

20.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号