首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Liver fibrosis is a chronic disease that results from hepatitis B and C infections, alcohol abuse or metabolic and genetic disorders. Ultimately, progression of fibrosis leads to cirrhosis, a stage of the disease characterized by failure of the normal liver functions. Currently, the treatment of liver fibrosis is mainly based on the removal of the underlying cause of the disease and liver transplantation, which is the only treatment for patients with advanced fibrosis. Hepatic stellate cells (HSC) are considered to be key players in the development of liver fibrosis. Chronically activated HSC produces large amounts of extracellular matrix and enhance fibrosis by secreting a broad spectrum of cytokines that exert pro-fibrotic actions in other cells, and in an autocrine manner perpetuate their own activation. Therefore, therapeutic interventions that inhibit activation of HSC and its pro-fibrotic activities are currently under investigation worldwide. In the present study we applied targeted liposomes as drug carriers to HSC in the fibrotic liver and explored the potential of these liposomes in antifibrotic therapies. Moreover, we investigated effects of bioactive compounds delivered by these liposomes on the progression of liver fibrosis. To our knowledge, this is the first study demonstrating that lipid-based drug carriers can be selectively delivered to HSC in the fibrotic liver. By incorporating the bioactive lipid DLPC, these liposomes can modulate different processes such as inflammation and fibrogenesis in the fibrotic liver. This dual functionality of liposomes as a drug carrier system with intrinsic biological effects may be exploited in new approaches to treat liver fibrosis.  相似文献   

2.
The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC), which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.  相似文献   

3.
Hepatic stellate cells (HSCs) are known as initiator cells that induce liver fibrosis upon intoxication or other noxes. Deactivation of this ongoing remodeling process of liver parenchyma into fibrotic tissue induced by HSCs is an interesting goal to be achieved by targeted genetic modification of HSCs. The most widely applied approach in gene therapy is the utilization of specifically targeted vectors based on Adenovirus (Ad) serotype 5. To narrow down the otherwise ubiquitous tropism of parental Ad, two modifications are required: a) ablating the native tropism and b) redirecting the vector particles towards a specific entity solely present on the cells of interest. Therefore, we designed a peptide of the nerve growth factor (NGFp) with specific affinity for the p75 neurotrophin receptor (p75NTR) present on HSCs. Coupling of this NGFp to vector particles was done either via chemical conjugation using bifunctional polyethylene glycol (PEG) or, alternatively, by molecular bridging with a fusion protein specific for viral fiber knob and p75NTR. Both Ad vectors transmit the gene for the green fluorescent protein (GFP). GFP expression was monitored in vitro on primary murine HSCs as well as after systemic administration in mice with healthy and fibrotic livers using intravital fluorescence microscopy. Coupling of NGFp to Ad via S11 and/or PEGylation resulted in markedly reduced liver tropism and an enhanced adenoviral-mediated gene transfer to HSCs. Transduction efficiency of both specific Ads was uniformly higher in fibrotic livers, whereas Ad.GFP-S11-NGFp transduce activated HSCs better than Ad.GFP-PEG-NGFp. These experiments contribute to the development of a targeted gene transfer system to specifically deliver antifibrotic compounds into activated HSCs by systemically applied adenoviral vector modified with NGFp.  相似文献   

4.
目的:建立裸鼠皮下共培养人肝癌细胞与肝星形细胞模型,观察人肝癌细胞与肝星形细胞间相互作用后超微结构的改变.方法:将16只裸鼠分为两组,肝癌细胞单独培养组和癌细胞与肝星形细胞共培养组,40天后将荷瘤组织切片行光镜及透射电镜观察.结果:肝癌细胞单独培养组中可观察到肝癌细胞的胞质液化及早期细胞凋亡现象,而共培养组中可见肝星形细胞时肝癌细胞的趋化现象,可观察到肝癌细胞结构完整且有增殖趋势.结论:裸鼠皮下荷瘤三维立体模型建立成功,该模型能够模拟肝癌微环境中肝癌细胞与肝星形细胞问的作用,为进一步研究肝癌细胞与肝星形细胞间的相互作用奠定了基础.  相似文献   

5.
Resveratrol (RSV) is known for its antioxidant properties; however, this compound has been proposed to have cytotoxic and pro-oxidant effects depending on its concentration and time of exposure. We previously reported the cell cycle arrest effect of low doses of RSV in GRX cells, an activated hepatic stellate cell model. Here, we evaluated the effects of RSV treatment (0.1–50 μM) for 24 and 120 h on GRX viability and oxidative status. Only treatment with 50 μM of RSV reduced the amount of live cells. However, even low doses of RSV induced an increased reactive species production at both treatment times. While being diminished within 24 h, RSV induced an increase in the SOD activity in 120 h. The cellular damage was substantially increased at 24 h in the 50 μM RSV-treated group, as indicated by the high lipoperoxidation, which may be related to the significant cell death and low proliferation. Paradoxically, this cellular damage and lipoperoxidation were considerably reduced in this group after 120 h of treatment while the surviving cells proliferated. In conclusion, RSV induced a dose-dependent pro-oxidant effect in GRX cells. The highest RSV dose induced oxidative-related damage, drastically reducing cell viability; but this cytotoxicity seems to be attenuated during 120 h of treatment.  相似文献   

6.

Background

Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs) is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA) is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.

Materials and Methods

The cell line of rat hepatic stellate cells (HSC-T6) was stimulated with lipopolysaccharide (LPS) (100 ng/ml). Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM), then induced by LPS (100 ng/ml). NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38). Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.

Results

All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.

Conclusion

Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.  相似文献   

7.
8.
9.
PP Wang  DY Xie  XJ Liang  L Peng  GL Zhang  YN Ye  C Xie  ZL Gao 《PloS one》2012,7(8):e43408

Aims

Bone marrow-derived mesenchymal stem cells (BMSCs) can reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs.

Methods

We used BMSCs directly and indirectly co-culture system with HSCs to evaluate the anti-fibrosis effect of BMSCs. Cell proliferation and activation were examined in the presence of BMSCs and HGF. c-met was knockdown in HSCs to evaluate the effect of HGF secreted by BMSCs. The TLR4 and Myeloid differentiation primary response gene 88(MyD88) mRNA levels and the NF-kB pathway activation were determined by real-time PCR and western blotting analyses. The effect of BMSCs on HSCs activation was investigated in vitro in either MyD88 silencing or overexpression in HSCs. Liver fibrosis in rats fed CCl4 with and without BMSCs supplementation was compared. Histopathological examinations and serum biochemical tests were compared between the two groups.

Results

BMSCs remarkably inhibited the proliferation and activation of HSCs by interfering with LPS-TLR4 pathway through a cell–cell contact mode that was partially mediated by HGF secretion. The NF-kB pathway is involved in HSCs activation inhibition by BMSCs. MyD88 over expression reduced the BMSC inhibition of NF-kB luciferase activation. BMSCs protected liver fibrosis in vivo.

Conclusion

BMSCs modulate HSCs in vitro via TLR4/MyD88/NF-kB signaling pathway through cell–cell contact and secreting HGF. BMSCs have therapeutic effects on cirrhosis rats. Our results provide new insights into the treatment of hepatic fibrosis with BMSCs.  相似文献   

10.

Background & Aims

After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP) has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1), which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC) and LX-2 cell lines.

Methods

TGF-β1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR) after HSCs or LX-2 cells were treated with PTHrP(1–36) or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA) of HSC cell culture media.

Results

In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs.

Conclusions

PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.  相似文献   

11.
Although the various biological roles of thymosin β4 (Tβ4) have been studied widely, the effect of Tβ4 and Tβ4-expressing cells in the liver remains unclear. Therefore, we investigated the expression and function of Tβ4 in chronically damaged livers. CCl4 was injected into male mice to induce a model of chronic liver disease. Mice were sacrificed at 6 and 10 weeks after CCl4 treatment, and the livers were collected for biochemical analysis. The activated LX-2, human hepatic stellate cell (HSC) line, were transfected with Tβ4-specific siRNA and activation markers of HSCs were examined. Compared to HepG2, higher expression of Tβ4 in RNA and protein levels was detected in the activated LX-2. In addition, Tβ4 was up-regulated in human liver with advanced liver fibrosis. The expression of Tβ4 increased during mouse HSC activation. Tβ4 was also up-regulated and Tβ4-positive cells were co-localized with α-smooth muscle actin (α-SMA) in the livers of CCl4-treated mice, whereas such cells were rarely detected in the livers of corn-oil treated mice. The suppression of Tβ4 in LX-2 cells by siRNA induced the down-regulation of HSC activation-related genes, tgf-β, α-sma, collagen, and vimentin, and up-regulation of HSC inactivation markers, ppar-γ and gfap. Immunofluorescent staining detected rare co-expressing cells with Tβ4 and α-SMA in Tβ4 siRNA-transfected cells. In addition, cytoplasmic lipid droplets were observed in Tβ4 siRNA-treated cells. These results demonstrate that activated HSCs expressed Tβ4 in chronically damaged livers, and this endogenous expression of Tβ4 influenced HSC activation, indicating that Tβ4 might contribute to liver fibrosis by regulating HSC activation.  相似文献   

12.
13.
14.
目的:探讨细胞外基质金属蛋白酶诱导分子(CD147)在胰腺癌细胞(Panc-1)及胰腺星状细胞(PSCs)的表达。方法:应用QRT—PCR,免疫细胞化学和免疫印迹分析方法检测Panc-1和PSCs细胞中EMMRPIN的表达,应用脱糖基化试剂N—glycosidase F及Endoglycosidase H鉴定CD147糖基化形式。结果:CD147在Panc-1和PSCs细胞质膜及细胞质中高表达,通过脱糖基化法首次鉴定出胰腺癌细胞及胰腺星状细胞中CD147不同的糖基化修饰。结论:CD147的糖基化修饰具有细胞特异性,可能与细胞恶性程度相关。  相似文献   

15.
目的:探讨细胞外基质金属蛋白酶诱导分子(CD147)在胰腺癌细胞(Panc-1)及胰腺星状细胞(PSCs)的表达。方法:应用QRT-PCR,免疫细胞化学和免疫印迹分析方法检测Panc-1和PSCs细胞中EMMRPIN的表达,应用脱糖基化试剂N-glycosidase F及Endoglycosidase H鉴定CD147糖基化形式。结果:CD147在Panc-1和PSCs细胞质膜及细胞质中高表达,通过脱糖基化法首次鉴定出胰腺癌细胞及胰腺星状细胞中CD147不同的糖基化修饰。结论:CD147的糖基化修饰具有细胞特异性,可能与细胞恶性程度相关。  相似文献   

16.
17.
Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro.  相似文献   

18.
MethodsLiver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.ResultsTreatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.ConclusionsBased on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.  相似文献   

19.
Angiogenesis is a fundamental part of the response to tissue injury, which is involved in the development of hepatic fibrosis. Vascular endothelial growth factor plays an important role in angiogenesis. The expression of VEGF is increased during hepatic fibrogenesis and correlates with the micro-vessel density. In this study, we investigated the effects of bevacizumab, an anti-angiogenetic drug, on the formation of hepatic fibrosis. We found that bevacizumab could attenuate the development of hepatic fibrosis and contribute to the protection of liver function. Bevacizumab was also found to downregulate the expression α-SMA and TGF-β1, which have been reported to be profibrogenic genes in vivo. We also observed that the expression of VEGF increased significantly during the development of hepatic fibrosis and CCl4 was found to induce hepatocytes to secrete VEGF, which led to the activation and proliferation of HSCs. Bevacizumab was also found to block the effects of the hepatocytes on the activation and proliferation of HSCs. Our results suggest that bevacizumab might alleviate liver fibrosis by blocking the effect of VEGF on HSCs. Bevacizumab might be suitable as a potential agent for hepatic fibrosis therapy.  相似文献   

20.
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号