首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Small RNA-mediated gene silencing plays evolutionarily conserved roles in gene regulation and defense against invasive nucleic acids. Virus-derived small interfering RNAs (vsiRNAs) are one of the key elements involved in RNA silencing-based antiviral activities in plant and insect. vsiRNAs produced after viruses infecting hosts from a single kingdom (i.e., plant or animal) are well described. In contrast, vsiRNAs derived from viruses capable of infecting both plants and their insect vectors have not been characterized.

Methodology/Principal Findings

We examined Rice stripe virus (RSV)-derived small interfering RNAs in three different hosts, Oryza sativa, Nicotiana benthamiana and a natural RSV transmitting vector Laodelphgax striatellus, through deep sequencing. Our results show that large amounts of vsiRNAs generated in these hosts after RSV infection. The vsiRNAs from N. benthamiana and L. striatellus mapped equally to the genomic- and antigenomic-strand of RSV RNAs. They showed, however, a significant bias in those from O. sativa. Furthermore, our results demonstrate that the number and size distributions of vsiRNAs in the three hosts were very different. In O. sativa and N. benthamiana, most vsiRNAs were mapped to the discrete regions in the RSV genome sequence, and most of the vsiRNAs from these two hosts were generated from RSV genomic RNAs 3 and 4. In contrast, the vsiRNAs identified in L. striatellus distributed uniformly along the whole genome of RSV. We have also shown that silencing Agronaute 2 in L. striatellus enhanced RSV accumulation in this host.

Conclusions/Significance

Our study demonstrates that the core RNA-induced gene silencing (RNAi) machinery is present in L. striatellus. We also provide evidence that the RNAi-mediated immunity against RSV is present in L. striatellus. We propose that a common small RNA-mediated virus defense mechanism exists in both helipterum insects and plants, but the vsiRNAs are generated differentially in different hosts.  相似文献   

2.
Laodelphax striatellus is an important vector of rice stripe virus (RSV). In this study, electrical penetration graph technology was applied to investigate the feeding behavior of L. striatellus associated with virus transmission. The effects of a disease-resistant variety Yandao No. 8 on the feeding behavior and subsequent virus transmission efficiency of L. striatellus were examined. The results indicate that in addition to the phloem sap ingestion phase, which was previously reported as a behavior associated with virus acquisition, phases of salivation and stylet movement were relevant to RSV acquisition by naïve L. striatellus. The duration of the non-penetration phase of naïve L. striatellus on healthy Yandao No. 8 plants was significantly longer, and the duration of sap ingestion was significantly shorter compared to those on a susceptible control. RSV acquisition rate of naïve L. striatellus on Yandao No. 8 was only 28 % of that on the susceptible control. Virus inoculation by viruliferous L. striatellus could occur during the salivation, stylet movement, and phloem sap ingestion phases. Yandao No. 8 significantly prolonged the duration of the non-penetration phase and significantly shortened the duration of sap ingestion in viruliferous L. striatellus. Virus inoculation rate of viruliferous L. striatellus feeding on healthy Yandao No. 8 was significantly lower, decreasing by 27 %, than that of the control. The mechanisms of varietal effects on the feeding behavior and virus transmission of L. striatellus are discussed. The varietal effect on virus transmission should have significance for viral disease control.  相似文献   

3.
《Journal of Asia》2014,17(3):595-600
The small brown planthopper, Laodelphax striatellus (Fallén), can transfer Rice stripe virus (RSV) to host plants, which then develop rice stripe disease. Between vectors, there are two paths for RSV transmission. In current study, we examined the horizontal, vertical and compound transmission rates (horizontal and vertical transmissions together) by L. striatellus from one non-epidemic area (Fuyang in Zhejiang province) and three epidemic areas (Yizheng and Peixian in Jiangsu province, and Donggang in Liaoning province). RSV acquisition rates for naïve L. striatellus from the four populations were not significantly different. RSV transmission rate to healthy rice plants by viruliferous L. striatellus from Fuyang population was relatively lower than those of the other three populations. For example, RSV transmission rate in Fuyang population decreased by 1 fold compared to that in Peixian population when the transmission times were 48 and 72 h. It indicated that horizontal transmission ability of Fuyang population was lower. Vertical transmission rate and the compound transmission abilities of infective L. striatellus in the first generation did not differ significantly among the four populations. However, the ratio of RSV-positive offspring of an infective mother in the fourth generation of Fuyang population (84.3 ± 2.4%) was lowest, and decreased by 10% compared to that of Peixian population. It meant that compound transmission ability of Fuyang population was significantly lower than the other three populations. The reason for the difference in transmission abilities of L. striatellus from different populations was discussed.  相似文献   

4.
Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV), a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus), is also spread to the offspring through the eggs. Here, we used the RSV–planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg) of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs) only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM) also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes.  相似文献   

5.
Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.  相似文献   

6.
Maintenance of a balance between the levels of viral replication and selective pressure from the immune systems of insect vectors is one of the prerequisites for efficient transmission of insect-borne propagative phytoviruses. The mechanism regulating the adaptation of RNA viruses to insect vectors by genomic variation remains unknown. Our previous study demonstrated an extension of the 3’-untranslated terminal region (UTR) of two genomic segments of rice stripe virus (RSV). In the present study, a reverse genetic system for RSV in human cells and an insect vector, the small brown planthopper Laodelphax striatellus, was used to demonstrate that the 3’-terminal extensions suppressed viral replication in vector insects by inhibiting promoter activity due to structural interference with the panhandle structure formed by viral 3’- and 5’-UTRs. The extension sequence in the viral RNA1 segment was targeted by an endogenous insect microRNA, miR-263a, which decreased the inhibitory effect of the extension sequence on viral promoter activity. Surprisingly, the expression of miR-263a was negatively regulated by RSV infection. This elaborate coordination between terminal variation of the viral genome and endogenous insect microRNAs controls RSV replication in planthopper, thus reflecting a distinct strategy of adaptation of phytoviruses to insect vectors.  相似文献   

7.
Mechanisms of resistance to rice stripe disease in a Chinese rice cultivar (Oryza sativa L., cv. Zhendao 88) were determined, and molecular markers for the resistance gene were identified. Single tillers at the seedling stage were inoculated with Rice stripe virus (RSV) and its vector, the small brown planthopper (SBPH) Laodelphax striatellus Fallen, to test for non‐preference and antibiosis. The inheritance of resistance in the F2 and F2 : 3 lines from the cross cvs Zhendao 88× Wuyujing No. 3 was also examined by single‐tiller inoculation. Cv. Zhendao 88 was highly resistant to RSV and weakly resistant to SBPH. The resistance gene was mapped by SSR and RAPD analyses to rice chromosome 11 within 4.7 cm of a SSR marker RM229 and a RAPD marker OPO11. Data and inheritance analysis indicated that rice stripe disease resistance in cv. Zhendao 88 was derived principally from resistance to RSV and controlled by a single dominant gene. Breeding for rice stripe resistance could be accelerated by using cv. Zhendao 88 as a resistant parent if the linked marker for virus resistance were used in a marker‐assisted progeny selection programme.  相似文献   

8.
Rice black-streaked dwarf virus (RBSDV) and stripe virus (RSV) are the two chronic viral diseases causing great damage to rice (Oryza sativa L.) production in China, and both are transmitted by the small brown planthopper (SBPH, Laodelphax striatellus Fallén). Quantitative trait loci (QTL) affecting field resistance to these two viral diseases were identified using QTL mapping software in a set of reciprocal introgression lines derived from the cross between Lemont and Teqing. A panel of 119 landraces was used for marker confirmation and allele mining. A total of 17 quantitative resistance loci (QRL) for the infection incidences of RBSDV and RSV were discovered and belong to 16 regions on all chromosomes except chromosome 12. Among them, 12 QRL were confirmed by association mapping, and many novel alleles at these loci were mined from the set of landraces. Only one region was found to be responsible for the genetic overlap between the field resistance against RBSDV and RSV, which was reported to be associated with SBPH resistance. The favorable alleles at the above novel and/or overlapping loci should be effective for marker-assisted selection breeding for resistance against the two diseases and the insect. Different strategies of varietal development and effective deployment against the two viral diseases are also discussed.  相似文献   

9.
Macroautophagy/autophagy plays an important role against pathogen infection in mammals and plants. However, little has been known about the role of autophagy in the interactions of insect vectors with the plant viruses, which they transmit. Begomoviruses are a group of single-stranded DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci in a circulative manner. In this study, we found that the infection of a begomovirus, tomato yellow leaf curl virus (TYLCV) could activate the autophagy pathway in the Middle East Asia Minor 1 (MEAM1) species of the B. tabaci complex as evidenced by the formation of autophagosomes and ATG8-II. Interestingly, the activation of autophagy led to the subsequent degradation of TYLCV coat protein (CP) and genomic DNA. While feeding the whitefly with 2 autophagy inhibitors (3-methyladenine and bafilomycin A1) and silencing the expression of Atg3 and Atg9 increased the viral load; autophagy activation via feeding of rapamycin notably decreased the amount of viral CP and DNA in the whitefly. Furthermore, we found that activation of whitefly autophagy could inhibit the efficiency of virus transmission; whereas inhibiting autophagy facilitated virus transmission. Taken together, these results indicate that TYLCV infection can activate the whitefly autophagy pathway, which leads to the subsequent degradation of virus. Furthermore, our report proves that an insect vector uses autophagy as an intrinsic antiviral program to repress the infection of a circulative-transmitted plant virus. Our data also demonstrate that TYLCV may replicate and trigger complex interactions with the insect vector.  相似文献   

10.
11.
媒介昆虫的核心共生菌能被用作基因工程菌发挥抗病毒功能.灰飞虱是一种重要的农业害虫,其传播的水稻条纹病毒造成水稻的大面积减产甚至绝收.[目的]本研究对不同稻区及温室饲养的灰飞虱进行菌群组成分析并初步鉴定灰飞虱的核心共生菌.[方法]通过16SrDNA介导的二代测序技术,分析了 2018-2020年间采集自云南昆明、河南开封...  相似文献   

12.
Rice stripe virus (RSV) is the type species of the genus Tenuivirus and represents a major viral pathogen affecting rice production in East Asia. In this study, RSV p2 was fused to yellow fluorescent protein (p2‐YFP) and expressed in epidermal cells of Nicotiana benthamiana. p2‐YFP fluorescence was found to move to the nucleolus initially, but to leave the nucleolus for the cytoplasm forming numerous distinct bright spots there at later time points. A bimolecular fluorescence complementation (BiFC) assay showed that p2 interacted with fibrillarin and that the interaction occurred in the nucleus. Both the nucleolar localization and cytoplasmic distribution of p2‐YFP fluorescence were affected in fibrillarin‐silenced N. benthamiana. Fibrillarin depletion abolished the systemic movement of RSV, but not that of Tobacco mosaic virus (TMV) and Potato virus X (PVX). A Tobacco rattle virus (TRV)‐based virus‐induced gene silencing (VIGS) method was used to diminish RSV NS2 (encoding p2) or NS3 (encoding p3) during RSV infection. Silencing of NS3 alleviated symptom severity and reduced RSV accumulation, but had no obvious effects on virus movement and the timing of symptom development. However, silencing of NS2 abolished the systemic movement of RSV. The possibility that RSV p2 may recruit or manipulate nucleolar functions to promote virus systemic infection is discussed.  相似文献   

13.
The unfolded protein response (UPR) plays important roles in plant virus infection. Our previous study has proved that rice stripe virus (RSV) infection elicits host UPR. However, the mechanism on how the UPR is triggered upon RSV infection remains obscure. Here, we show that the bZIP17/28 branch of the UPR signalling pathway is activated upon RSV infection in Nicotiana benthamiana. We found that membrane-associated proteins NSvc2 and NSvc4 encoded by RSV are responsible for the activation of the bZIP17/28 branch. Ectopic expression of NSvc2 or NSvc4 in plant leaves induced the proteolytic processing of NbbZIP17/28 and up-regulated the expression of UPR-related genes. Silencing NbbZIP17/28 significantly inhibited RSV infection. We show that RSV can specifically elicit the UPR through the bZIP17/28 branch, thus promoting virus infection of N. benthamiana plants.  相似文献   

14.
The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female‐biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male‐killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male‐killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single‐infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double‐infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double‐infection state than in the single‐infection state. In the double‐infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma‐infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.  相似文献   

15.
16.
17.
18.
Li S  Xiong R  Wang X  Zhou Y 《PloS one》2011,6(10):e26585
Rice stripe virus (RSV) is the type member of the genus Tenuivirus, which relies on the small brown planthopper (Laodelphax striatellus Fallén) for its transmission in a persistent, circulative-propagative manner. To be transmitted, virus must cross the midgut and salivary glands epithelial barriers in a transcytosis mechanism where vector receptors interact with virions, and as propagative virus, RSV need utilize host components to complete viral propagation in vector cells. At present, these mechanisms remain unknown. In this paper, we screened L. striatellus proteins, separated by two-dimensional electrophoresis (2-DE), as potential RSV binding molecules using a virus overlay assay of protein blots. The results, five L. striatellus proteins that bound to purified RSV particles in vitro were resolved and identified using mass spectrometry. The virus-binding capacities of five proteins were further elucidated in yeast two-hybrid screen (YTHS) and virus-binding experiments of expressed proteins. Among five proteins, the receptor for activated protein kinase C (RACK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH3) did not interact with RSV nucleocapsid protein (NCP) in YTHS and in far-Western blot, and three ribosomal proteins (RPL5, RPL7a and RPL8) had specific interactions with RSV. In dot immunobinding assay (DIBA), all five proteins were able to bind to RSV particles. The five proteins' potential contributions to the interactions between RSV and L. striatellus were discussed. We proposed that RACK and GAPDH3 might be involved in the epithelial transcytosis of virus particles, and three ribosomal proteins probably played potential crucial roles in the infection and propagation of RSV in vector cells.  相似文献   

19.
Insect-borne plant viruses may modify the phenotype of their host plants and thus influence the responses of insect vectors. When a plant virus modifies host preference behavior of a vector, it can be expected to influence the rate of virus transmission. In this study, we examined the effect of Maize Iranian mosaic virus (MIMV) infection on host preference behavior of the nymphs and adults of its vector, the small brown planthopper, Laodelphax striatellus Fallén (Hemiptera: Delphacidae), feeding on barley plants (Hordeum vulgare L., Poaceae). We found that both viruliferous nymphs and adults significantly preferred healthy plants, whereas non-viruliferous planthoppers preferred virus-infected barley. Further investigations revealed significant reductions in the chlorophyll and carotenoid contents of infected barley leaves. Based on these results, a possible association between insect host preferences and the pigment contents of the plants was observed. In summary, we suggest that host preference of L. striatellus could be affected by the propagative plant virus, possibly through association of this modification with some phenotypic traits of infected plants. These effects may have a critical impact on MIMV transmission rate, with significant implications for the development of virus epidemics.  相似文献   

20.
The genus Baculovirus contains three subgroups of viral types: (1) nuclear polyhedrosis viruses (NPVs), (2) granulosis viruses (GVs), and (3) nonoccluded baculoviruses. While little information is available for viruses from the third subgroup, several aspects of the infectivity and mode of action of NPVs and GVs have been studied. The most common route of entry of a virus into an insect host is per os, and both virus types enter midgut cells (primary site of infection) by membrane fusion. However, two distinct mechanisms of virus uncoating occur among the baculoviruses: NPVs uncoat within the nucleus, whereas GVs uncoat at the nuclear pore complex. Baculoviruses of subgroup 3 appear to uncoat by either mechanism. In addition to replicating within the nucleus, NPV inoculum virus may pass through the intestinal epithelium immediately after ingestion, thereby establishing a systemic infection of the hemocoel prior to virus replication in midgut cells. The GVs do not appear to pass through midgut cells as rapidly as NPVs and in general, the developmental cycle of GVs is longer than that of NPVs. NPVs have been grown in cell culture while GVs have not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号