共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Michael W Klymkowsky Christy Cortez Rossi Kristin Bruk Artinger 《Cell Adhesion & Migration》2010,4(4):595-608
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play and, equally importantly, where disparities in experimental results suggest areas of profitable study.Key words: evolution, neural crest, mesoderm, induction, migration 相似文献
3.
《Cell Adhesion & Migration》2013,7(4):595-608
The neural crest is an evolutionary adaptation, with roots in the formation of mesoderm. Modification of neural crest behavior has been is critical for the evolutionary diversification of the vertebrates and defects in neural crest underlie a range of human birth defects. There has been a tremendous increase in our knowledge of the molecular, cellular, and inductive interactions that converge on defining the neural crest and determining its behavior. While there is a temptation to look for simple models to explain neural crest behavior, the reality is that the system is complex in its circuitry. In this review, our goal is to identify the broad features of neural crest origins (developmentally) and migration (cellularly) using data from the zebrafish (teleost) and Xenopus laevis (tetrapod amphibian) in order to illuminate where general mechanisms appear to be in play, and equally importantly, where disparities in experimental results suggest areas of profitable study. 相似文献
4.
Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction 总被引:1,自引:0,他引:1
Bone morphogenetic protein (BMP) inhibition has been proposed as the primary determinant of neural cell fate in the developing Xenopus ectoderm. The evidence supporting this hypothesis comes from experiments in explanted "animal cap" ectoderm and in intact embryos using BMP antagonists that are unregulated and active well before gastrulation. While informative, these experiments cannot answer questions regarding the timing of signals and the behavior of cells in the more complex environment of the embryo. To examine the effects of BMP antagonism at defined times in intact embryos, we have generated a novel, two-component system for conditional BMP inhibition. We find that while blocking BMP signals induces ectopic neural tissue both in animal caps and in vivo, in intact embryos, it can only do so prior to late blastula stage (stage 9), well before the onset of gastrulation. Later inhibition does not induce neural identity, but does induce ectopic neural crest, suggesting that BMP antagonists play temporally distinct roles in establishing neural and neural crest identity. By combining BMP inhibition with fibroblast growth factor (FGF) activation, the neural inductive response in whole embryos is greatly enhanced and is no longer limited to pre-gastrula ectoderm. Thus, BMP inhibition during gastrulation is insufficient for neural induction in intact embryos, arguing against a BMP gradient as the sole determinant of ectodermal cell fate in the frog. 相似文献
5.
Kuriyama S Ueda A Kinoshita T 《Journal of experimental zoology. Part A, Comparative experimental biology》2003,296(2):108-116
We have previously isolated a CNS-specific gene, Xerl. The prospective amino acid sequence and functional analysis had shown that Xerl might act as the secretory protein for determining the neural plate/neural crest boundary. However, we had not yet characterized the Xerl protein. In the present study we examined the distribution and function of Xerl protein using anti-Xerl polyclonal antibody. Western blot analysis revealed that Xerl exists as 150 kDa protein in soluble fraction from the neurula stage. In comparison with gene expression of Xerl, Xerl protein showed a diffusive distribution from the neural tissue to the neighboring notochord and somite. Immunostaining of endogenous Xerl protein and subcellular localization of GFP-tagged Xerl demonstrated the extracellular secretion of Xerl protein. With functional blocking by antibody injection, the injected anti-Xerl antibody caused an inhibitory effect on the neural plate formation, whereas neural crest formation was promoted in the antibody-injected embryo. These results suggest that Xerl is a secreted protein required for establishing the neural plate/neural crest boundary in Xenopus embryo. 相似文献
6.
7.
Induction and development of neural crest in Xenopus laevis 总被引:1,自引:0,他引:1
8.
Cranial neural crest (CNC) cells migrate extensively, typically in a pattern of cell streams. In Xenopus, these cells express the adhesion molecule Xcadherin-11 (Xcad-11) as they begin to emigrate from the neural fold. In order to study the function of this molecule, we have overexpressed wild-type Xcad-11 as well as Xcad-11 mutants with cytoplasmic (deltacXcad-11) or extracellular (deltaeXcad-11) deletions. Green fluorescent protein (GFP) was used to mark injected cells. We then transplanted parts of the fluorescent CNC at the premigratory stage into non-injected host embryos. This altered not only migration, but also the expression of neural crest markers. Migration of transplanted cranial neural crest cells was blocked when full-length Xcad-11 or its mutant lacking the beta-catenin-binding site (deltacXcad-11) was overexpressed. In addition, the expression of neural crest markers (AP-2, Snail and twist) diminished within the first four hours after grafting, and disappeared completely after 18 hours. Instead, these grafts expressed neural markers (2G9, nrp-I and N-Tubulin). Beta-catenin co-expression, heterotopic transplantation of CNC cells into the pharyngeal pouch area or both in combination failed to prevent neural differentiation of the grafts. By contrast, deltaeXcad-11 overexpression resulted in premature emigration of cells from the transplants. The AP-2 and Snail patterns remained unaffected in these migrating grafts, while twist expression was strongly reduced. Co-expression of deltaeXcad-11 and beta-catenin was able to rescue the loss of twist expression, indicating that Wnt/beta-catenin signalling is required to maintain twist expression during migration. These results show that migration is a prerequisite for neural crest differentiation. Endogenous Xcad-11 delays CNC migration. Xcad-11 expression must, however, be balanced, as overexpression prevents migration and leads to neural marker expression. Although Wnt/beta-catenin signalling is required to sustain twist expression during migration, it is not sufficient to block neural differentiation in non-migrating grafts. 相似文献
9.
10.
Genomic analysis of neural crest induction 总被引:3,自引:0,他引:3
The vertebrate neural crest is a migratory stem cell population that arises within the central nervous system. Here, we combine embryological techniques with array technology to describe 83 genes that provide the first gene expression profile of a newly induced neural crest cell. This profile contains numerous novel markers of neural crest precursors and reveals previously unrecognized similarities between neural crest cells and endothelial cells, another migratory cell population. We have performed a secondary screen using in situ hybridization that allows us to extract temporal information and reconstruct the progression of neural crest gene expression as these cells become different from their neighbors and migrate. Our results reveal a sequential 'migration activation' process that reflects stages in the transition to a migratory neural crest cell and suggests that migratory potential is established in a pool of cells from which a subset are activated to migrate. 相似文献
11.
Hassler C Cruciat CM Huang YL Kuriyama S Mayor R Niehrs C 《Development (Cambridge, England)》2007,134(23):4255-4263
Kremen 1 and 2 (Krm1/2) are transmembrane receptors for Wnt antagonists of the Dickkopf (Dkk) family and function by inhibiting the Wnt co-receptors LRP5/6. Here we show that Krm2 functions independently from Dkks during neural crest (NC) induction in Xenopus. Krm2 is co-expressed with, and regulated by, canonical Wnts. Krm2 is differentially expressed in the NC, and morpholino-mediated Krm2 knockdown inhibits NC induction, which is mimicked by LRP6 depletion. Conversely, krm2 overexpression induces ectopic NC. Kremens bind to LRP6, promote its cell-surface localization and stimulate LRP6 signaling. Furthermore, Krm2 knockdown specifically reduces LRP6 protein levels in NC explants. The results indicate that in the absence of Dkks, Kremens activate Wnt/beta-catenin signaling through LRP6. 相似文献
12.
Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus 总被引:6,自引:0,他引:6
Hox genes are required to pattern neural crest (NC) derived craniofacial and visceral skeletal structures. However, the temporal requirement of Hox patterning activity is not known. Here, we use an inducible system to establish Hoxa2 activity at distinct NC migratory stages in Xenopus embryos. We uncover stage-specific effects of Hoxa2 gain-of-function suggesting a multistep patterning process for hindbrain NC. Most interestingly, we show that Hoxa2 induction at postmigratory stages results in mirror image homeotic transformation of a subset of jaw elements, normally devoid of Hox expression, towards hyoid morphology. This is the reverse phenotype to that observed in the Hoxa2 knockout. These data demonstrate that the skeletal pattern of rhombomeric mandibular crest is not committed before migration and further implicate Hoxa2 as a true selector of hyoid fate. Moreover, the demonstration that the expression of Hoxa2 alone is sufficient to transform the upper jaw and its joint selectively may have implications for the evolution of jaws. 相似文献
13.
14.
This Review focuses on recent advances in the field of cranial neural crest cell migration in Xenopus laevis with specific emphasis on cell adhesion and the regulation of cell migration. Our goal is to combine the understanding of cell adhesion to the extracellular matrix with the regulation of cell-cell adhesion and the involvement of the planar cell polarity signaling-pathway in guiding the migration of cranial neural crest cells during embryogenesis.Key words: neural crest, cell migration, extracellular matrix, cell adhesion, Wnt, planar cell polarity 相似文献
15.
Previous work by our group has demonstrated that mesencephalic neural crest cells at an early stage of migration are able to synthesize acetylcholine (ACh). Acetylcholinesterase (AChE), the enzyme responsible for ACh degradation, was examined in neural crest cells of the chick embryo, using cytochemical and biochemical methods. Observations at the light microscope level showed that cholinesterase activity, identified as true AChE, was present at all axial levels in presumptive crest cells of the neural folds, soon after closure of the neural tube. Subsequently, AChE activity was found in cells of the individualized neural crest and in crest cells migrating at cephalic and trunk levels. Cell counts revealed that 88–94% of the total crest population was AChE-positive. Electron microscope observations indicated that the enzyme was confined to perinuclear and endoplasmic reticulum cisternae. The AChE of migrating mesencephalic neural crest cells was identified as the dimeric form (sedimentation coefficient 6.9 S) of the catalytic subunit. These results indicate that the specific AChE is present in the majority of neural crest cells all along the neural axis. Thus the ability to synthesize and degrade ACh is expressed at least in some neural crest cells at an early stage of development. 相似文献
16.
17.
18.
《Cell Adhesion & Migration》2013,7(4):553-560
This review focuses on recent advances in the field of cranial neural crest cell migration in Xenopus laevis with specific emphasis on cell adhesion and the regulation of cell migration. Our goal is to combine the understanding of cell adhesion to the extracellular matrix with the regulation of cell-cell adhesion and the involvement of the planar cell polarity signaling-pathway in guiding the migration of cranial neural crest cells during embryogenesis. 相似文献
19.
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction. 相似文献