首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All porcine oocytes cultured 20 hr in medium with 10 μg/ml cycloheximide rested in the germinal vesicle (GV) stage but with the highly condensed bivalents in nucleoplasm. When these oocytes were washed and cultured in the control medium for 2, 4, and 6 hr, germinal vesicle breakdown (GVBD) was completed in 0, 86, and 100% of them, respectively. When similarly inhibited oocytes cultured successively only 2.5 hr in the control medium were given again in cycloheximide enriched medium (3.5 hr), nearly all of them reached late diakinesis stage again. It means that oocytes cultured for 20 hr and washed free of this inhibitor of protein synthesis completed GVBD rapidly (4 hr) and protein synthesis crucial for nuclear membrane disintegration occurred already during the first 2 hr after washing of inhibitor. All oocytes cultured for 20 hr in medium with 1 mM p-aminobenzamidine rested in GV with chromatin around the compact nucleolus. The successive culture in cycloheximide (20 hr) and p-aminobenzamidine (10 hr) prevented GVBD in all oocytes, too. In contrast, when the oocytes washed after cycloheximide block (20 hr) were cultured in p-aminobenzamidine enriched medium 2 and 3 hr and again for 6 hr in cycloheximide medium, the nuclear membrane dissolved in 62 and 68% of oocytes, respectively. These data suggest that inhibition of protein synthesis in pig oocytes does not prevent the high condensation of bivalents in GV. However, nuclear membrane breakdown requires the successive protein synthesis and proteolysis.  相似文献   

2.
Involvement of protein synthesis in frog pituitary homogenate (FPH)-induced progesterone production and/or accumulation in ovarian follicles was investigated. In amphibians, cycloheximide (C), an inhibitor of protein synthesis, inhibits progesterone and FPH-induced germinal vesicle breakdown (GVBD). However, the site and mechanisms of action of cycloheximide within ovarian follicles have not been elucidated. Intrafollicular progesterone produced by FPH is considered to mediate oocyte maturation; thus, cycloheximide may interfere with production and/or action of progesterone. Simultaneous treatment of FPH-stimulated follicles with cycloheximide inhibited FPH-induced progesterone accumulation (measured by RIA) and the accompanying-GVBD in a dose-dependent fashion. Inhibitory effects of cycloheximide on either FPH-induced progesterone production or GVBD were not reversed when follicles were washed and returned to fresh medium devoid of FPH and cycloheximide. However, subsequent restimulation of washed follicles with FPH resulted in increased progesterone levels and oocyte maturation. The extent of reversibility, in terms of GVBD and progesterone production, after FPH restimulation varied between animals. Pretreatment of follicles with cycloheximide for 6 hours, without FPH, had little or no effect on progesterone production when follicles were washed and treated with FPH. Delayed addition of cycloheximide to follicles following FPH stimulation blocked further progesterone accumulation as indicated by measurement of intrafollicular progesterone at the time of cycloheximide addition and at the end of the incubation period. The results indicate that cycloheximide rapidly inhibits progesterone production and that continuous protein synthesis is required for progesterone accumulation. Furthermore, protein synthesis does not appear to be required for progesterone metabolism since intrafollicular progesterone declined with prolonged culture even in the presence of cycloheximide. The nature of protein(s) involved in follicular progesterone production remains to be elucidated. FPH mediation of oocyte maturation within ovarian follicles appears to depend upon protein synthesis in somatic follicle cells, which is required for progesterone production, and in the oocyte, to mediate the response to the steroid trigger.  相似文献   

3.
To determine if newly synthesized protein is imperative for the resumption of meiosis in bovine follicular oocytes collected from small antral follicles, cumulus-enclosed and denuded oocytes were cultured in TCM-199 both with and without various concentrations of the protein synthesis inhibitor, cycloheximide. After 11 h of culture in inhibitor-free medium, all oocytes had undergone germinal vesicle breakdown (GVBD). However, when concentrations of more than 1.0 mug/ml cycloheximide were added to the medium, the meiotic resumption of bovine oocytes was completely blocked. This inhibitory effect of cycloheximide was fully reversible after removal of the inhibitor from maturation media. Germinal vesicle breakdown following removal of cycloheximide occurred twice as fast as in the control medium. Nevertheless, when oocytes were arrested at the germinal vesicle (GV) stage by cycloheximide, a significantly higher proportion of chromatin condensation (40 to 57%) was observed in denuded oocytes than in cumulus-enclosed oocytes (11 to 22%). Thus the cycloheximide treatment could not prevent the chromatin condensation in only denuded oocytes. We conclude that protein synthesis is a prerequisite for GVBD in bovine follicular oocytes and that cumulus cells are responsible for the complementary regulation of the chromatin condensation at the GV stage, regardless of protein synthesis in the oocytes.  相似文献   

4.
The modes of action of insulin and of inhibitors of protein synthesis on the degradation of labeled cellular proteins have been studied in cultured hepatoma (HTC) cells. Protein breakdown is accelerated upon the deprivation of serum (normally present in the culture medium), and this enhancement is inhibited by either insulin or cycloheximide. An exception is a limited class of rapidly turning over cellular proteins, the degradation of which is not influenced by insulin or cycloheximide. Alternative hypotheses to explain the relationship of protein synthesis to the regulation of protein breakdown, viz., control by the levels of precursors of protein synthesis, regulation by the state of the ribosome cycle, or requirement for a product of protein synthesis, have been examined. Protein breakdown was not influenced by amino acid deprivation, and measurements of valyl-tRNA levels in HTC cells subjected to various experimental conditions showed no correlation between the levels of charged tRNAVal and the rates of protein degradation. Three different inhibitors of protein synthesis (puromycin, pactamycin, and cycloheximide) suppressed enhanced protein breakdown in a similar fashion. A direct relationship was found between the respective potencies of these drugs to inhibit protein synthesis and to block enhanced protein breakdown. When cycloheximide and insulin were added following a prior incubation of HTC cells in a serum-free medium, protein breakdown was maximally suppressed within 15-30 min. Actinomycin D inhibited protein breakdown only after a time lag of about 90 min. It is suggested that the regulation of protein breakdown in hepatoma cells requires the continuous formation of a product of protein synthesis, in a manner analogous to the mode of the control of this process in bacteria.  相似文献   

5.
Summary In the absence of a suitable energy source, mouse oocytes cultured in vitro resume, but fail to complete, meiotic maturation. However, little is known about the underlying mechanisms leading to this meiotic failure. We utilized pyruvate-deficient medium to test for the role of pyruvate throughout the meiotic maturation process. Germinal vesicle-stage (GV) oocytes underwent germinal vesicle breakdown (GVBD), but failed to form a polar body when cultured continuously in pyruvate-free medium. However, when GV oocytes were preincubated for 4 h in pyruvate-free medium containing dibutyryl cyclic adenosine monophosphate (dbcAMP) and then cultured in pyruvate-free medium, GVBD was markedly inhibited. Preincubation of GV oocytes in dbcAMP and cycloheximide, followed by culture in cycloheximide only, also inhibited GVBD. A longer preincubation period was required in the cycloheximide-dbcAMP case (12 h) than in pyruvate-free-dbcAMP medium situation (4 h). Strikingly, reassembly of the nuclear membrane without polar body formation was observed following GVBD in oocytes continuously cultured in pyruvate-free medium. The reassembled nuclear membrane increased in size with continued culture, and it surrounded partially-decondensed chromatin. Nuclear membrane reassembly also occurred in oocytes which had undergone GVBD during continuous culture in medium containing only cycloheximide. Reformation of nuclear membranes after GVBD was confirmed by electron-microscopic analyses of oocytes cultured in pyruvate-free medium or in the presence of cycloheximide. We conclude that both pyruvate and protein synthesis are required for nuclear membrane disassembly, whereas lack of pyruvate or protein synthesis is associated with interruption of the metaphase state and reassembly of the nuclear membrane. The evidence suggests that assembly and maintenance of an intact nucleus and its disintegration are all amenable to regulation by pyruvate, possibly via mechanism(s) involving protein synthesis.  相似文献   

6.
Papaverine, cycloheximide, 2,4-dinitrophenol (DNP) and actinomycin D at low concentration have been shown to suppress selectively rRNA synthesis in Ehrlich ascite carcinoma cells. rRNA synthesis in isolated nuclei is not sensible to wide range of concentration of papaverine (0,005-0,1 mM), cycloheximide (0,5-100 micrograms/ml) and DNP (5-500 microM). Actinomycin D at low concentration does not act on the rRNA synthesis in vitro either. To suppress rRNA synthesis in this system much higher concentration of this agent (10 micrograms/ml) producing inhibition of all classes of rRNA synthesis in intact cells is required. Selective sensitivity of rRNA synthesis in the cells to papaverine, cycloheximide, DNP and low concentration of actinomycin D does not connect with their direct action on the apparatus of rRNA synthesis.  相似文献   

7.
Temporal progression of nuclear events of goat oocytes matured in vitro was studied by adding a specific inhibitor to the culture medium at different time points, to investigate protein synthesis requirements and its pattern during in vitro maturation. Goat cumulus-oocyte complexes (COCs) were matured in vitro in TCM 199, fixed at different time intervals and stained with orcein to assess nuclear changes. The germinal vesicle (GV) stage was found to be present at 0 h, chromosomal condensation stage was observed at 8 h, metaphase I at 12 to 14 h, and metaphase II was begun after 16 h of maturation and was nearly completed at 24 h. Protein synthesis inhibitor, cycloheximide, blocked oocyte maturation at germinal vesicle breakdown(GVBD), if added to the maturation medium between 0 to 4 h, suggesting that protein synthesis is required for GVBD. The transition from metaphase I to metaphase II was also protein synthesis-dependent, as observed when cycloheximide was used between 8 to 10 h of culture. When cycloheximide was added from 12 h of culture onwards, nuclear progression to metaphase II was progressively restored, but many chromosomal abnormalities were noted. Changes in the protein synthesis pattern were studied by radiolabeling of oocytes with [(35)S]-methionine at 0, 7, 12 and 24 h of culture, corresponding with GV, GVBD, metaphase I and metaphase II stages. A polypeptide of 28.1 KDa appeared as a major band at the GV stage, and its size decreased greatly and disappeared after the GVBD stage. Three new polypeptides (35, 36.5 and 39 KDa) appeared at GVBD and were detectable at metaphase II. In conclusion, the synthesis of proteins is required for the maintenance and transition of goat oocytes from GV to metaphase II during in vitro maturation.  相似文献   

8.
Tatemoto H  Terada T 《Theriogenology》1998,49(5):1007-1020
The effects of FSH-stimulated cumulus cells on the regulatory mechanisms of chromatin condensation and maturation-promoting factor (MPF) activation around the time of germinal vesicle breakdown (GVBD) in bovine oocytes were examined. Chromatin condensation occurred in oocytes arrested at the germinal vesicle (GV) stage by protein synthesis inhibitor, cycloheximide, but this condensation was blocked by FSH-stimulated cumulus cells. However, treatment with cyclic AMP (cAMP)-dependent protein kinase inhibitor, H-8, dramatically increased the proportion of oocytes possessing GVs with condensed bivalents. Under the condition of inhibited protein synthesis, the phosphorylation form of p34cdc2 kinase was not changed due to chromatin condensation, although the activity of histone H1 kinase was significantly increased compared with that of oocytes possessing GVs with filamentous bivalents. The cycloheximide-dependent GVBD block was overcome by okadaic acid (OA) in 48 and 13% of the oocytes in the absence and presence of FSH, respectively. An initial 6-h culture period critical for protein synthesis was necessary for OA to counteract the inhibitory effect exerted by cycloheximide on the induction of GVBD and activation of histone H1 kinase in the absence of FSH, whereas this first culture period was prolonged for 2 h in the presence of FSH. Furthermore, even in FSH-stimulated oocytes, H-8 facilitated an OA-counteracted overcome of the cycloheximide-dependent GVBD block after 2 h of initial culture for protein synthesis. From these results, it is concluded that cAMP-dependent protein kinase activity regulated by cumulus cells following FSH-stimulation requests plays a role in the complex mechanism of chromatin condensation and MPF activation leading to meiotic resumption in bovine oocytes.  相似文献   

9.
10.
After energy depletion by uncouplers of oxidative phosphorylation or inhibitors of electron transport, primary cultures of carcinogen-induced rat mammary tumors have a 2- to 20-fold increase in the number of cell surface prolactin receptors. When energy-depleted cells were treated with 0.15 M NaCl plus 50 mM glycine pH 3, for 1 min at 4 degrees C, 75% of the specific surface-bound 125I-labeled ovine prolactin was removed, but prolactin and its receptor were not destroyed. Using this technique, we found that receptor-bound prolactin can be internalized (becomes resistant to pH 3.0 treatment) and then degraded. The internalization of occupied receptors required energy, was completed 30-60 min before degradation, and was independent of protein synthesis. Hormone degradation (t1/2, 42 min) but not uptake was prevented by NH4Cl or lysosomotropic amines. In the presence of cycloheximide, receptors were lost (t1/2, 62 min) unless such loss was prevented by KCN. After unoccupied receptors were activated by energy depletion, surface receptors were lost when inhibitor was removed and glucose was added. Thus, both occupied and unoccupied prolactin receptors are constantly removed from the cell surface via an energy-dependent uptake mechanism. If the receptor levels are first increased by energy depletion (with or without bound ligand) or if protein synthesis is inhibited, there is a net loss of surface binding sites. Since the receptors reappeared with 15 h after cycloheximide removal, some of the receptors probably are recycled under normal steady state conditions.  相似文献   

11.
Oocytes of Xenopus laevis undergo maturation when injected with an affinity-purified antibody against the COOH-terminal decapeptide of the alpha subunit of the G-protein Gs, an antibody that inhibits Gs activity. Germinal vesicle breakdown, chromosome condensation, and polar body formation occur, with a time course similar to that for oocytes treated with progesterone. The alpha S antibody-injected oocytes also acquire the ability to be activated by sperm. Coinjection of the catalytic subunit of cAMP-dependent protein kinase, or incubation with cycloheximide, inhibits maturation in response to injection of the alpha S antibody; these experiments show that the alpha S antibody acts at an early point in the pathway leading to oocyte maturation, before formation of maturation promoting factor, and like progesterone, its action requires protein synthesis. Immunogold electron microscopy shows that alpha S is present in the yolk platelet membranes as well as the plasma membrane. These results support the hypothesis that progesterone acts by inhibiting alpha S, and suggest that the target of progesterone could include yolk platelet membranes as well as the plasma membrane.  相似文献   

12.
Brain cells from 16 to 18-day-old mice embryos were dissociated by mild trypsinization and rotated for 120 min. The area and density of of the adhesive complexes formed were registered using the method described previously. The adhesiveness of dissociated embryonic brain cells (measured during the 120 min of rotation) was diminished in the presence of inhibitors of protein synthesis (puromycin, cycloheximide and inhibition of mRNA synthesis actinomycin D). The inhibition was, however, not distinct, because 1 microgram/ml of cycloheximide and actinomycin was without any significant effect, and the degree of inhibition evoked by 10 micrograms/ml and 25 micrograms/ml of puromycin bordered on significance. However, protein synthesis inhibitors in long-term aggregation experiments had a pronounced inhibitory effect and/or induced destruction of the aggregates. Metabolic inhibitors (KCN and NaN3) caused an inhibition at the lowest level of significance (p less than 0.05) 10(-3) mol/l KCN reduced the final adhesive product significantly. Cells rotated at room temperature and at +5 degrees C adhere to the same extent as in control experiments (37 degrees C). The adhesion was significantly inhibited at +60 degrees C and also after freezing at -80 degrees C with subsequent thawing. The adhesion of cells exposed for 30 min to between +80 degrees C and 100 degrees C was completely abolished. The process of embryonic brain cell adhesion requires a low energy supply, and is relatively independent of biosynthetic processes and of temperature changes between +5 degrees C and +50 degrees C.  相似文献   

13.
The present study was carried out using the method of electrofusion, or treatment with okadaic acid (OA), to determine whether protein synthesis at the onset of culture was required for the meiotic resumption of bovine follicular oocytes. Germinal vesicle breakdown (GVBD) occurred in bovine oocytes at 6 hr after separation from their follicles in vitro. Following this, immature germinal vesicle (GV) oocytes, preincubated for 0,2,4, and 6 hr, were fused to mature oocytes. When immature oocytes, preincubated for 0 hr, were fused to mature oocytes and then cultured for 3 hr in basic medium, GVBD was observed in all fused cells, whereas in the case of cultivation in medium supplemented with the protein synthesis inhibitor (25 μg/ml cycloheximide; CX), 39% of the fused cells possessed an intact GV within their cytoplasm. In immature oocytes preincubated for 4 or 6 hr, however, this proportion was significantly reduced to 7% and 4%, respectively, without protein synthesis after fusion. In addition, the CX-dependent block of GVBD could be overcome in only 13% of bovine follicular oocytes by the addition of 2 μM OA, although 51% of oocytes which synthesized the protein during the first 6 hr of culture induced GVBD in subsequent culture with CX plus OA. Thus, we conclude that the initiation of GVBD in bovine oocytes requires protein synthesized at the onset of meiosis, which is related to the autocatalytic amplification of the maturation-promoting factor. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The influence of 2,4-dinitrophenol (DNP), papaverine and cycloheximide on RNA synthesis in Ehrlich ascites tumour cells has been investigated. All above mentioned agents inhibit selectively synthesis of high-molecular rRNA precursor, when the cell population density is 3.10(7)--5.10(7) per 1 ml of suspension. When the density of cells decreases as far as 1.10(6) cells per 1 ml. the rRNA synthesis loses the sensitivity to all these agents. The effects of both cycloheximide on the protein synthesis and DNP on ATP level do not depend on the cell population density in suspension. It is suggested that either with a decrease of cell population density the protein synthesis and ATP level cease playing the role of a rate-limiting factor in the rRNA synthesis, or the influence of agents studied is realized by means of their interaction with other cell system.  相似文献   

15.
Stimulation of postconfluent Swiss 3T3 cells in serum-free medium with 4.3 mM Ca2+ results in marked increases in both released and cell-associated plasminogen activator (PA). Increased release of PA commenced approximately 10 to 12 hours post-stimulation and continued to increase steadily until 48 hours at which time the stimulates cells (4.3 mM Ca2+) released approximately 14 times more PA than control cells (1.8 mM Ca2+). Sr2+, like Ca2+, also stimulates PA synthesis/release either in the presence or in the absence of 1.8 mM Ca2+ whereas an excess of Mg2+ inhibits Ca2+ stimulation. Supranormal [Pi] in the medium stimulates PA synthesis/release in the presence of 1.8 mM mM Ca2+. Further, optimal stimulation by 4.3 mM Ca2+ requires a normal level of Pi (1.0 mM). Elevation of medium [Ca2+] or [Pi] results in an enhanced uptake of Ca2+. The facts that cycloheximide treatment completely abolishes the Ca2+ stimulatory effect and that an increase in cell associated PA precedes release indicate that PA release is coupled to synthesis of new PA. Ca2+ stimulation of PA synthesis/release also requires continuous energy production and RNA as well as protein synthesis. A hypothesis is proposed to explain the relationship between stimulation of PA production and its enhanced release from cells stimulated by elevated [Ca2+] or [Pi] in the media. The possibility that PA release may be an example of the phenomenon of membrane shedding as opposed to secretion is discussed.  相似文献   

16.
Inhibitory action of Fumonisin B1 (FB1) on eukaryotic protein synthesis was investigated, both in animal and plant system, and was compared with cycloheximide. Inhibitory effect of FB1 was monitored in the TCA precipitable proteins of rabbit reticulocyte lysates exposed to various concentrations of the mycotoxin (0.0013–2.76 mM), using 35 S-methionine as a tracer. FB1 inhibited the protein synthesis by 6%, at 0.0013 mM and by 88%, at a higher concentration of 2.76 mM. Cycloheximide at a concentration of 0.355 mM was found to inhibit protein synthesis by 88%. Inhibitory action of FB1 (1 mg kg−1 body mass and a higher dose of 10 mg kg−1 body mass) or cycloheximide (10 mg kg−1 body mass; positive controls), injected intra-peritoneally into BALB/c mice was studied using 14C-l-Leucine as a tracer. FB1 at lower dose of 1 mg kg−1 body mass inhibited protein synthesis in liver by 8% and at a higher dose of 10 mg kg−1 body mass by 38% in the BALB/c mice, when compared to cycloheximide which inhibited protein synthesis by 61%. The effects of FB1 on protein synthesis in plant system was studied in germinated maize seedlings exposed to FB1 at 0.9 μM, 0.009 mM and 0.09 mM concentrations, using 14C-l-Leucine as a tracer. Fumonisin B1 at low, middle, and higher concentrations (0.9 μM, 0.009 mM, and 0.09 mM) inhibited protein synthesis in the seedlings by 4%, 12% and 22%, respectively. The inhibitory effects of FB1 on the protein synthesis in the animal system in vitro and in vivo conditions, and in the plant system were found to be dose-dependent, though it was less potent compared to cycloheximide.  相似文献   

17.
Mechanisms controlling disintegration or breakdown of the germinal vesicle (GVBD) in Rana oocytes were investigated. A secondary cytoplasmic maturation promoting factor (MPF), produced in response to steroid stimulation, was shown to induce maturation when injected into immature recipient oocytes. Exposure of immature Rana oocytes to cycloheximide following injection of MPF or steroid treatment completely inhibited such maturation. Results indicate that injected MPF required protein synthesis for germinal vesicle breakdown and thus acted at some translational level. These results contrast with data obtained in Xenopus oocytes where injected MPF induced maturation in the presence of cycloheximide. Cytoplasmic MPF was also produced in Rana oocytes following treatment with lanthanum salts. This activity was similarly inhibited by cycloheximide. Time course studies conducted to compare the onset of cycloheximide insensitivity in steroid-treated and MPF-injected oocytes demonstrated that MPF-injected oocytes become insensitive to cycloheximide prior to steroid-treated germ cells. These results suggest that MPF acts as an intermediary in progesterone-induced maturation. Insensitivity to cycloheximide occurred several hours prior to the onset of germinal vesicle breakdown in both MPF-injected and steroid-treated oocytes. The data indicate that injected MPF in Rana does not induce nuclear disintegration directly, but rather requires amplification and/or autocatalytic synthesis of additional MPF or other factors for maturation to be induced. Molecular mechanisms involved in nuclear disintegration are discussed in relation to these species differences.  相似文献   

18.
The protoprotein aequorin was used in order to monitor Ca2+ transients in conditions where progesterone induced maturation was reversibly inhibited. Propionate but not isethionate Cl-free medium impaired both meiosis reinitiation and the Ca2+ transient, unless oocytes were returned to normal Cl-containing medium. Similar results were obtained with the protein synthesis inhibitor cycloheximide. In both cases, the incidence of germinal vesicle breakdown (GVBD) and the time schedule relating it to the Ca2+ surge appeared not very different from that found from control oocytes. The evidence suggests that both treatments act on the initial step by which progesterone triggers the intracellular Ca2+ release needed for maturation promoting factor (MPF) elaboration. No definitive conclusion can be reached however from these experiments concerning the need for protein synthesis during meiosis reinitiation.  相似文献   

19.
Treatment of isolated amphibian ovarian follicles with frog pituitary homogenate (FPH) increases follicular progesterone levels, which, in turn, initiate oocyte maturation. Recent studies have demonstrated that follicular progesterone production requires concomitant protein synthesis at some stage preceding pregnenolone formation. Experiments were carried out to determine whether cholesterol metabolism plays a role in mediating these biochemical and physiological processes. Aminoglutethimide (AGI, and inhibitor of P450 side-chain cleavage enzyme) inhibited FPH-induced intrafollicular progesterone accumulation and oocyte maturation (or germinal vesicle breakdown, GVBD) in a dose-dependent manner. Follicular progesterone accumulation and GVBD were both stimulated, in the absence of FPH, after addition of 25-OH-cholesterol, but not cholesterol, to the culture medium. Higher levels of progesterone were present in defolliculated oocytes as compared to intact ovarian follicles after incubation with 25-OH-cholesterol. The results indicate that the surface epithelium and theca layer in the follicle wall retard 25-OH-cholesterol access to steroid-producing follicle cells. AGI blocked 25-OH-cholesterol-induced accumulation of progesterone and GVBD in defolliculated oocytes, suggesting that 25-OH-cholesterol does not directly induce GVBD and is metabolized by the follicle cells. The capacity of follicles to accumulate progesterone following preincubation with FPH or 25-OH-cholesterol along with AGI was compared. Intrafollicular levels of progesterone increased after AGI- and 25-OH-cholesterol-treated follicles were washed. In contrast, progesterone levels decreased in follicles pretreated with AGI and FPH after washing. The results indicate that considerable 25-OH-cholesterol, but not endogenous cholesterol (FPH stimulation), remains available for steroidogenesis after removal of AGI. A significant, but incomplete, inhibition of progesterone accumulation occurred when follicles were incubated in the presence of 25-OH-cholesterol and cycloheximide. This partial blockage produced by the protein synthesis inhibitor indicates that some basal protein synthesis is required for progesterone accumulation from exogenous 25-OH-cholesterol. We conclude that intracellular cholesterol stores in the follicle wall are utilized to mediate FPH induction of progesterone accumulation and oocyte maturation in amphibian follicles.  相似文献   

20.
Short exposure (1-2 h) of cultured cells, derived from a transplantable murine mammary carcinoma, to sodium arsenite, 2,4-dinitrophenol (DNP), carbonylcyanide-3-chlorophenylhydrazone (CCP) or disulfiram, induced resistance to a subsequent heat treatment, similar to heat-induced thermotolerance. Optimum resistance to a test heat treatment of 45 min at 45 degrees C after sodium arsenite exposure was obtained at a concentration of 300 microM, after DNP exposure at 3mM, after CCP at 300 microM and after disulfiram exposure in the range 1-30 microM. Exposure of cells to CCP, sodium arsenite or disulfiram led to enhanced synthesis of some proteins with the same molecular weight as 'heat shock' proteins. The pattern of enhanced synthesis of these proteins was agent specific. We could not detect significantly enhanced synthesis of the proteins after DNP using one-dimensional gel electrophoresis. These results suggest that enhanced stress protein synthesis is not a prerequisite for the development of thermal resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号