首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Binding sites in proteins can be either specifically functional binding sites (active sites) that bind specific substrates with high affinity or regulatory binding sites (allosteric sites), that modulate the activity of functional binding sites through effector molecules. Owing to their significance in determining protein function, the identification of protein functional and regulatory binding sites is widely acknowledged as an important biological problem. In this work, we present a novel binding site prediction method, Active and Regulatory site Prediction (AR-Pred), which supplements protein geometry, evolutionary, and physicochemical features with information about protein dynamics to predict putative active and allosteric site residues. As the intrinsic dynamics of globular proteins plays an essential role in controlling binding events, we find it to be an important feature for the identification of protein binding sites. We train and validate our predictive models on multiple balanced training and validation sets with random forest machine learning and obtain an ensemble of discrete models for each prediction type. Our models for active site prediction yield a median area under the curve (AUC) of 91% and Matthews correlation coefficient (MCC) of 0.68, whereas the less well-defined allosteric sites are predicted at a lower level with a median AUC of 80% and MCC of 0.48. When tested on an independent set of proteins, our models for active site prediction show comparable performance to two existing methods and gains compared to two others, while the allosteric site models show gains when tested against three existing prediction methods. AR-Pred is available as a free downloadable package at https://github.com/sambitmishra0628/AR-PRED_source .  相似文献   

3.
MOTIVATION: Characterization of a protein family by its distinct sequence domains is crucial for functional annotation and correct classification of newly discovered proteins. Conventional Multiple Sequence Alignment (MSA) based methods find difficulties when faced with heterogeneous groups of proteins. However, even many families of proteins that do share a common domain contain instances of several other domains, without any common underlying linear ordering. Ignoring this modularity may lead to poor or even false classification results. An automated method that can analyze a group of proteins into the sequence domains it contains is therefore highly desirable. RESULTS: We apply a novel method to the problem of protein domain detection. The method takes as input an unaligned group of protein sequences. It segments them and clusters the segments into groups sharing the same underlying statistics. A Variable Memory Markov (VMM) model is built using a Prediction Suffix Tree (PST) data structure for each group of segments. Refinement is achieved by letting the PSTs compete over the segments, and a deterministic annealing framework infers the number of underlying PST models while avoiding many inferior solutions. We show that regions of similar statistics correlate well with protein sequence domains, by matching a unique signature to each domain. This is done in a fully automated manner, and does not require or attempt an MSA. Several representative cases are analyzed. We identify a protein fusion event, refine an HMM superfamily classification into the underlying families the HMM cannot separate, and detect all 12 instances of a short domain in a group of 396 sequences. CONTACT: jill@cs.huji.ac.il; tishby@cs.huji.ac.il.  相似文献   

4.
MOTIVATION: Sequencing of a bi-allelic PCR product, which contains an allele with a deletion/insertion mutation results in a superimposed tracefile following the site of this shift mutation. A trace file of this type hampers the use of current computer programs for base calling. ShiftDetector analyses a sequencing trace file in order to discover if it is a superimposed sequence of two molecules that differ in a shift mutation of 1 to 25 bases. The program calculates a probability score for the existence of such a shift and reconstructs the sequence of the original molecule. AVAILABILITY: ShiftDetector is available from http://cowry.agri.huji.ac.il  相似文献   

5.
6.
The ProtoNet site provides an automatic hierarchical clustering of the SWISS-PROT protein database. The clustering is based on an all-against-all BLAST similarity search. The similarities' E-score is used to perform a continuous bottom-up clustering process by applying alternative rules for merging clusters. The outcome of this clustering process is a classification of the input proteins into a hierarchy of clusters of varying degrees of granularity. ProtoNet (version 1.3) is accessible in the form of an interactive web site at http://www.protonet.cs.huji.ac.il. ProtoNet provides navigation tools for monitoring the clustering process with a vertical and horizontal view. Each cluster at any level of the hierarchy is assigned with a statistical index, indicating the level of purity based on biological keywords such as those provided by SWISS-PROT and InterPro. ProtoNet can be used for function prediction, for defining superfamilies and subfamilies and for large-scale protein annotation purposes.  相似文献   

7.
8.
SUMMARY: We present an algorithmic tool for the identification of biologically significant amino acids in proteins of known three dimensional structure. We estimate the degree of purifying selection and positive Darwinian selection at each site and project these estimates onto the molecular surface of the protein. Thus, patches of functional residues (undergoing either positive or purifying selection), which may be discontinuous in the linear sequence, are revealed. We test for the statistical significance of the site-specific scores in order to obtain reliable and valid estimates. AVAILABILITY: The Selecton web server is available at: http://selecton.bioinfo.tau.ac.il SUPPLEMENTARY INFORMATION: More information is available at http://selecton.bioinfo.tau.ac.il/overview.html. A set of examples is available at http://selecton.bioinfo.tau.ac.il/gallery.html.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Bahir I  Linial M 《Proteins》2006,63(4):996-1004
The two ends of each protein are known as the amino (N-) and carboxyl (C-) termini. Short signatures in a protein's termini often carry vital cellular function. No systematic research has been conducted to address the importance of short signatures (3 to 10 amino acids) in protein termini at the proteomic level. Specifically, it is unknown whether such signatures are evolutionarily conserved, and if so, whether this conservation confers shared biological functions. Current signature detection methods fail to detect such short signatures due to inadequate statistical scores. The findings presented in this study strongly support the notion that functional significance of protein sets may be captured by short signatures at their termini. A positional search method was applied to over one million proteins from the UniProt database. The result is a collection of about a thousand significant signature groups (SIGs) that include previously identified as well as many novel signatures in protein termini. These SIGs represent protein sets with minimal or no overall sequence similarity excepting the similarity at their termini. The most significant SIGs are assigned by their strong correspondence to functional annotations derived from external databases such as Gene Ontology. Each of the SIGs is associated with the statistical significance of its functional association. These SIGs provide a valuable source for testing previously overlooked signatures in protein termini and allow for the investigation of the role played by such signatures throughout evolution. The SIGs archive and advanced search options are available at http://www.proteus.cs.huji.ac.il.  相似文献   

16.
Regression trees for regulatory element identification   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
19.
20.
Protein-protein interfaces are regions between 2 polypeptide chains that are not covalently connected. Here, we have created a nonredundant interface data set generated from all 2-chain interfaces in the Protein Data Bank. This data set is unique, since it contains clusters of interfaces with similar shapes and spatial organization of chemical functional groups. The data set allows statistical investigation of similar interfaces, as well as the identification and analysis of the chemical forces that account for the protein-protein associations. Toward this goal, we have developed I2I-SiteEngine (Interface-to-Interface SiteEngine) [Data set available at http://bioinfo3d.cs.tau.ac.il/Interfaces; Web server: http://bioinfo3d.cs.tau.ac.il/I2I-SiteEngine]. The algorithm recognizes similarities between protein-protein binding surfaces. I2I-SiteEngine is independent of the sequence or the fold of the proteins that comprise the interfaces. In addition to geometry, the method takes into account both the backbone and the side-chain physicochemical properties of the interacting atom groups. Its high efficiency makes it suitable for large-scale database searches and classifications. Below, we briefly describe the I2I-SiteEngine method. We focus on the classification process and the obtained nonredundant protein-protein interface data set. In particular, we analyze the biological significance of the clusters and present examples which illustrate that given constellations of chemical groups in protein-protein binding sites may be preferred, and are observed in proteins with different structures and different functions. We expect that these would yield further information regarding the forces stabilizing protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号