首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from 20 degrees C to 60 degrees C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's K(m) value and V(max) of the catalase for H2O2 were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of A406 to A280 for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.  相似文献   

2.
Studies using the nematode Caenorhabditis elegans as a model system to investigate the aging process have implicated the insulin/insulin-like growth factor-I signaling pathway in the regulation of organismal longevity through its action on a subset of target genes. These targets can be classified into genes that shorten or extend life-span upon their induction. Genes that shorten life-span include a variety of stress response genes, among them genes encoding catalases; however, no evidence directly implicates catalases in the aging process of nematodes or other organisms. Using genetic mutants, we show that lack of peroxisomal catalase CTL-2 causes a progeric phenotype in C. elegans. Lack of peroxisomal catalase also affects the developmental program of C. elegans, since Deltactl-2 mutants exhibit decreased egg laying capacity. In contrast, lack of cytosolic catalase CTL-1 has no effect on either nematode aging or egg laying capacity. The Deltactl-2 mutation also shortens the maximum life-span of the long lived Deltaclk-1 mutant and accelerates the onset of its egg laying period. The more rapid aging of Deltactl-2 worms is apparently not due to increased carbonylation of the major C. elegans proteins, although altered peroxisome morphology in the Deltactl-2 mutant suggests that changes in peroxisomal function, including increased production of reactive oxygen species, underlie the progeric phenotype of the Deltactl-2 mutant. Our findings support an important role for peroxisomal catalase in both the development and aging of C. elegans and suggest the utility of the Deltactl-2 mutant as a convenient model for the study of aging and the human diseases acatalasemia and hypocatalasemia.  相似文献   

3.
Rhizomelic Chondrodysplasia Punctata (RCDP) is an autosomal recessive disorder in which plasmalogen biosynthesis and phytanate catabolism are impaired. Peroxisomal structure and the intracellular localization of catalase, the 69 kDa peroxisomal integral membrane protein (PMP), and 3-oxoacyl-CoA thiolase were studied in cultured skin fibroblasts from control subjects and patients with RCDP. A punctate fluorescence pattern characteristic for peroxisomes was seen in control cells incubated with either anti-(catalase), anti-(69 kDa PMP) or anti-(3-oxoacyl-CoA thiolase). Incubation of mutant cells with anti-(catalase) or anti-(69 kDa PMP) resulted in the same pattern. However, when RCDP fibroblasts were incubated with a monoclonal anti-(3-oxoacyl-CoA thiolase) antibody no punctate fluorescence could be observed. Cryosections from control and RCDP cells were examined by electron microscopy using double immunogold labelling. RCDP fibroblasts contained structures indistinguishable from control peroxisomes, the membranes reacting with anti-(69 kDa PMP) and the matrix with anti-(catalase). However, the matrix of RCDP peroxisomes, unlike control peroxisomes, did not react with anti-(3-oxoacyl-CoA thiolase). We conclude that RCDP fibroblasts contain regularly shaped peroxisomes, comparable to control peroxisomes in number as well as in content of catalase and 69 kDa PMP. However, in RCDP peroxisomes the amount of 3-oxoacyl-CoA thiolase protein proved to be below the limit of detection.  相似文献   

4.
Rhizomelic Chondrodysplasia Punctata (RCDP) is an autosomal recessive disorder in which plasmalogen biosynthesis and phytanate catabolism are impaired. Peroxisomal structure and the intracellular localization of catalase, the 69 kDa peroxisomal integral membrane protein (PMP), and 3-oxoacyl-CoA thiolase were studied in cultured skin fibroblasts from control subjects and patients with RCDP. A punctate fluorescence pattern characteristic for peroxisomes was seen in control cells incubated with either anti-(catalase), anti-(69 kDa PMP) or anti-(3-oxoacyl- CoA thiolase). Incubation of mutant cells with anti-(catalase) or anti-(69 kDa PMP) resulted in the same pattern. However, when RCDP fibroblasts were incubated with a monoclonal anti-(3-oxoacyl-CoA thiolase) antibody no punctate fluorescence could be observed. Cryosections from control and RCDP cells were examined by electron microscopy using double immunogold labelling. RCDP fibroblasts contained structures indistinguishable from control peroxisomes, the membranes reacting with anti-(69 kDa PMP) and the matrix with anti-(catalase). However, the matrix of RCDP peroxisomes, unlike control peroxisomes, did not react with anti-(3-oxoacyl-CoA thiolase). We conclude that RCDP fibroblasts contain regularly shaped peroxisomes, comparable to control peroxisomes in number as well as in content of catalase and 69 kDa PMP. However, in RCDP peroxisomes the amoung of 3-oxoacyl-CoA thiolase protein proved to be below the limit of detection.  相似文献   

5.
A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 degrees C and a pH range from 6 to 10, with optimum activity occurring at 90 degrees C and pH 8. At pH 8, the enzyme was extremely stable at elevated temperatures with half-lives of 330 h at 80 degrees C and 3 h at 90 degrees C. The enzyme also demonstrated excellent stability at 70 degrees C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A K(m) of 35.5 mM and a V(max) of 20.3 mM/min.mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.  相似文献   

6.
In this study we cloned CTA1, the gene encoding peroxisomal catalase, from the methylotrophic yeast Candida boidinii and studied targeting of the gene product, Cta1p, into peroxisomes by using green fluorescent protein (GFP) fusion proteins. A strain from which CTA1 was deleted (cta1Delta strain) showed marked growth inhibition when it was grown on the peroxisome-inducing carbon sources methanol, oleate, and D-alanine, indicating that peroxisomal catalase plays an important nonspecific role in peroxisomal metabolism. Cta1p carries a peroxisomal targeting signal type 1 (PTS1) motif, -NKF, in its carboxyl terminus. Using GFP fusion proteins, we found that (i) Cta1p is transported to peroxisomes via its PTS1 motif, -NKF; (ii) peroxisomal localization is necessary for Cta1p to function physiologically; and (iii) Cta1p is bimodally distributed between the cytosol and peroxisomes in methanol-grown cells but is localized exclusively in peroxisomes in oleate- and D-alanine-grown cells. In contrast, the fusion protein GFP-AKL (GFP fused to another typical PTS1 sequence, -AKL), in the context of CbPmp20 and D-amino acid oxidase, was found to localize exclusively in peroxisomes. A yeast two-hybrid system analysis suggested that the low transport efficiency of the -NKF sequence is due to a level of interaction between the -NKF sequence and the PTS1 receptor that is lower than the level of interaction with the AKL sequence. Furthermore, GFP-Cta1pDeltankf coexpressed with Cta1p was successfully localized in peroxisomes, suggesting that the oligomer was formed prior to peroxisome import and that it is not necessary for all four subunits to possess a PTS motif. Since the main physiological function of catalase is degradation of H2O2, suboptimal efficiency of catalase import may confer an evolutionary advantage. We suggest that the PTS1 sequence, which is found in peroxisomal catalases, has evolved in such a way as to give a higher priority for peroxisomal transport to peroxisomal enzymes other than to catalases (e.g., oxidases), which require a higher level of peroxisomal transport efficiency.  相似文献   

7.
We sought to identify and characterize peroxisomes in the apicomplexan parasite Toxoplasma gondii. To initiate this process, we first cloned and sequenced the gene for T. gondii catalase (EC 1. 11.1.6), a marker enzyme for peroxisomes in eukaryotic cells. The gene predicts a protein of 57.2 kDa and 502 amino acids and has a strong homology to other eukaryotic catalases. A polyclonal antiserum raised against a glutathione S-transferase fusion protein recognized a single band with a molecular mass of 63 kDa by immunoblot. By immunofluorescence T. gondii catalase is present primarily in a punctate staining pattern anterior to the parasite nucleus. This compartment is distinguishable from other parasite organelles, namely micronemes, rhoptries, dense granules, and the apicoplast. Cytochemical visualization of catalase using diaminobenzidine precipitation gives a vesicular staining pattern anterior to the nucleus at the light level and round, vesicular structures with an estimated diameter of 100-300 nm by electron microscopy. T. gondii catalase has a putative C-terminal peroxisomal targeting signal in the last 3 amino acids (-AKM). Expression of T. gondii catalase in mammalian cells results in peroxisomal localization, whereas a construct lacking the targeting signal remains in the cytosol. Furthermore, addition of -AKM to the C terminus of chloramphenicol acetyltransferase is sufficient to target this protein to peroxisomes. These results provide the first evidence for peroxisomes in Apicomplexan parasites.  相似文献   

8.
A clone harbouring the genomic DNA sequence for the peroxisomal catalase of an n-alkane-utilizable yeast, Candida tropicalis, has been isolated by the hybrid-selection method and confirmed with a probe of catalase partial cDNA. Nucleotide sequence analysis of the cloned DNA disclosed that the gene fragment coding for catalase had a length of 1455 base pairs (corresponding to 485 amino acids; m = 54937 Da), and that the size of this enzyme was the smallest among all catalases reported hitherto. No intervening sequence was found in this coding region and some portions coincided with the amino acid sequences obtained from the analysis of the purified catalase. The comparison with three peroxisomal catalases from rat liver, bovine liver and human kidney, and one cytosolic catalase from Saccharomyces cerevisiae has revealed that catalase from C. tropicalis was more homologous to the peroxisomal enzymes than to the cytosolic one. C. tropicalis used the codons of the high-expression type. Amino acid residues were all conserved at the active and heme-binding sites. In the N and C-terminal regions there was no characteristic signal sequence or consensus sequence. However, a noticeable region, which can be discriminated between peroxisomal and cytosolic catalases, was proposed.  相似文献   

9.
1) Catalase from green leaves of Lens culinaris (lentils) was investigated with respect to isoenzyme patterns. In contrast to other plants, which have been reported to contain multiple forms of catalase, only one form of this enzyme was revealed when crude extracts were subjected to starch gel electrophoresis or to polyacrylamide disc-gel electrophoresis. Furthermore, catalases from leaves, stems and cotyledons were electrophoretically identical. 2) The leaf enzyme has been purified by conventional methods to apparent homogeneity. It has a molecular weight of 225 000 (ultracentrifuge) and is composed of four identical subunits of molecular weight 54 000 (sodium dodecylsulphate gel electrophoresis). The ratio A280/A405 of the pure enzyme was found to be 1.5. The isoelectric point is at pH 5.5. The enzyme, very labile at pH-values below 7.0, is stable in Tris chloride and potassium phosphate buffers between pH 7.5 and 9.5. It is slowly inactivated by 1mM dithiothreitol and is rapidly inactivated by 1mM mercaptoethanol. 3) The catalase was shown to be the major protein component of the peroxisomal matrix. It could not be detected at the membranes of the leaf peroxisomes.  相似文献   

10.
A castor bean (Ricinus communis cv. Hale) cDNA encoding catalase was cloned and sequenced. The cDNA encoding the carboxy-terminal domain of catalase was compared to the corresponding sequences of six other plant catalases. The deduced amino acid sequences were compared according to the chemical attributes of each amino acid within each carboxy-terminal domain. A tripeptide sequence having the chemical attributes of the peroxisomal targeting sequence [Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J. & Subramani, S. (1989) J. Cell Biol. 108, 1657-1664] was common to all the glyoxysomal/peroxisomal plant catalases. This sequence motif was located six amino acids from the carboxy terminus of each of the plant catalases. An identical motif was also found within the carboxy-terminal domain of three mammalian catalases previously sequenced. We hypothesize that these motifs are at least part of the targeting mechanism for catalase entry into plant glyoxysomes/peroxisomes.  相似文献   

11.
Catalase-2, the catalase found in spores of Bacillus subtilis, has been purified to homogeneity from a nonsporulating strain. The apparent native molecular weight is 504,000. The enzyme appears to be composed of six identical protomers with a molecular weight of 81,000 each. The amino acid composition is similar to the composition of other catalases. Like most catalases, catalase-2 exhibits a broad pH optimum from pH 4 to pH 12 and is sensitive to cyanide, azide, thiol reagents, and amino triazole. The apparent Km for H2O2 is 78 mM. The enzyme exhibits extreme stability, losing activity only slowly at 93 degrees C and remaining active in 1% SDS-7 M urea. The green-colored enzyme exhibits a spectrum like heme d with a Soret absorption at 403 nm and a molar absorptivity consistent with one heme per subunit. The heme cannot be extracted with acetone-HCl or ether, suggesting that it is covalently bound to the protein.  相似文献   

12.
Purification and characterization of catalase-1 from Bacillus subtilis   总被引:3,自引:0,他引:3  
The catalase activity produced in vegetative Bacillus subtilis, catalase-1, has been purified to homogeneity. The apparent native molecular weight was determined to be 395,000. Only one subunit type with a molecular weight of 65,000 was present, suggesting a hexamer structure for the enzyme. In other respects, catalase-1 was a typical catalase. Protoheme IX was identified as the heme component on the basis of the spectra of the enzyme and of the isolated hemochromogen. The ratio of protoheme/subunit was 1. The enzyme remained active over a broad pH range of 5-11 and was only slowly inactivated at 65 degrees C. It was inhibited by cyanide, azide, and various sulfhydryl compounds. The apparent Km for hydrogen peroxide was 40.1 mM. The amino acid composition was typical of other catalases in having relatively low amounts of tryptophan and cysteine.  相似文献   

13.
Catalase is sorted to peroxisomes via a C-terminal peroxisomal targeting signal 1 (PTS1), which binds to the receptor protein Pex5. Analysis of the C-terminal sequences of peroxisomal catalases from various species indicated that catalase never contains the typical C-terminal PTS1 tripeptide-SKL, but invariably is sorted to peroxisomes via a non-canonical sorting sequence. We analyzed the relevance of the non-canonical PTS1 of catalase of the yeast Hansenula polymorpha (-SKI). Using isothermal titration microcalorimetry, we show that the affinity of H. polymorpha Pex5 for a peptide containing -SKI at the C-terminus is 8-fold lower relative to a peptide that has a C-terminal -SKL. Fluorescence microscopy indicated that green fluorescent protein containing the -SKI tripeptide (GFP-SKI) has a prolonged residence time in the cytosol compared to GFP containing -SKL. Replacing the -SKI sequence of catalase into -SKL resulted in reduced levels of enzymatically active catalase in whole cell lysates together with the occurrence of catalase protein aggregates in the peroxisomal matrix. Moreover, the cultures showed a reduced growth yield in methanol-limited chemostats. Finally, we show that a mutant catalase variant that is unable to properly fold mislocalizes in protein aggregates in the cytosol. However, by replacing the PTS1 into -SKL the mutant variant accumulates in protein aggregates inside peroxisomes. Based on our findings we propose that the relatively weak PTS1 of catalase is important to allow proper folding of the enzyme prior to import into peroxisomes, thereby preventing the accumulation of catalase protein aggregates in the organelle matrix.  相似文献   

14.
The nucleotide sequence of a 2785-base-pair stretch of DNA containing the Saccharomyces cerevisiae catalase A (CTA1) gene has been determined. This gene contains an uninterrupted open reading frame encoding a protein of 515 amino acids (relative molecular mass 58,490). Catalase A, the peroxisomal catalase of S. cerevisiae was compared to the peroxisomal catalases from bovine liver and from Candida tropicalis and to the non-peroxisomal, presumably cytoplasmic, catalase T of S. cerevisiae. Whereas the peroxisomal catalases are almost colinear, three major insertions have to be introduced in the catalase T sequence to obtain an optimal fit with the other proteins. Catalase A is most closely related to the C. tropicalis enzyme. It is also more similar to the bovine liver catalase than to the second S. cerevisiae catalase. The differences between the two S. cerevisiae enzymes are most striking within four blocks of amino acids consisting of a total of 37 residues with high homology between the three peroxisomal, but low conservation between the S. cerevisiae catalases. The results obtained indicate that the peroxisomal catalases compared have very similar three-dimensional structures and might have similar targeting signals.  相似文献   

15.
The presence and intracellular localization of peroxisomal integral membrane proteins (PMP) were investigated in liver and cultured skin fibroblasts from control subjects and patients with the Zellweger syndrome and related disorders in which peroxisomes are virtually absent. Immunoblotting experiments showed that 22, 36 and 69 kDa PMPs were present and were confined to the membranous fraction both in the control liver and in the livers from the Zellweger patients. The 22 and 36 kDa PMPs were present in significantly lower amounts in the patients' livers than in the control liver. A reduced amount of the 69 kDa PMP was found in liver from one Zellweger but not in liver from another. The subcellular localization in fibroblasts of catalase and the 69 kDa PMP was studied by indirect immunofluorescence. A characteristic punctate fluorescence was seen in control cells incubated with either anti-(catalase) or with anti-(69 kDa PMP). Incubation of mutant cells with anti-(catalase) resulted in a diffuse fluorescence, whereas with anti-(69 kDa PMP) fluorescent particles were visualized which, in some cell lines, were larger and fewer in number than in control cells. Cryosections of control and mutant cells were examined by electron microscopy using immunogold labeling. Control cells contained small structures consisting of a single membrane enclosing a homogeneous matrix; the membranes reacted with anti-(69 kDa PMP) and the matrix with anti-(catalase). The mutant cell lines contained spherical or ellipsoidal structures whose membranes reacted with anti-(69 kDa PMP); no labeling was observed with anti-(catalase). We conclude that peroxisomal ghosts, the membranes of which contain the 69 kDa PMP, are present in peroxisome-deficient cell lines from all complementation groups studied so far.  相似文献   

16.
The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH (5.0-9.0), and remained stable over a broad temperature range (20 degrees C-60 degrees C). It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19% of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50% at concentrations of 11.5 microM, 0.52 microM, and 0.11 microM, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.  相似文献   

17.
We have purified an alkali-tolerant catalase from the thermophilic bacterium Metallosphaera hakonensis. The catalase gene, which encodes 303 amino acids and has a calculated molecular mass of 33 kDa, including its putative signal peptide encoding sequence, was cloned. The deduced amino acid sequence exhibited a region-specific homology with the sequences of manganese catalases from thermophilic bacteria such as Thermus thermophilus and Thermus brockianus. When this gene was overexpressed in Escherichia coli, proteins of the expected size (33 kDa) were overproduced in the inactive form. We made several attempts to obtain active forms of or to activate these overproduced proteins. Upon their induction into E. coli, a 100-fold increase in the catalase activity was detected when high-concentration manganese was used as the medium. The catalase activity of the purified enzyme was optimal at a pH of 10.0. The alkali-tolerant property of this catalase makes it a promising enzyme in biotechnological applications such as H(2)O(2)-detoxifying systems.  相似文献   

18.
Bacterial isolates Comamonas terrigena N3H (from soil contaminated with crude oil) and C. testosteroni (isolated from the sludge of a wastewater treatment plant), exhibit much higher total catalase activity than the same species from laboratory collection cultures. Electrophoretic resolution of catalases revealed only one corresponding band in cell-free extracts of both C. testosteroni cultures. Isolates of C. terrigena N3H exhibited catalase-1 and catalase-2 activity, whereas in the collection culture C. terrigena ATCC 8461 only catalase-1 was detected. The environmental isolates exhibited much higher resistance to exogenous H2O2 (20, 40 mmol/L) than collection cultures, mainly in the middle and late exponential growth phases. The stepwise H2O2-adapted culture of C. terrigena N3H, which was more resistant to oxidative stress than the original isolate, exhibited an increase of catalase and peroxidase activity represented by catalase-1. Pretreatment of cells with 0.5 mmol/L H2O2 followed by an application of the oxidative agent in toxic concentrations (up to 40 mmol/L) increased the rate of cell survival in the original isolate, but not in the H2O2-adapted variant. The protection of bacteria caused by such pretreatment corresponded with stimulation of catalase activity in pretreated culture.  相似文献   

19.
The beta-oxidation of fatty acids in peroxisomes produces hydrogen peroxide (H2O2), a toxic metabolite, as a bi-product. Fatty acids beta-oxidation activity is deficient in X-linked adrenoleukodystrophy (X-ALD) because of mutation in ALD-gene resulting in loss of very long chain acyl-CoA synthetase (VLCS) activity. It is also affected in disease with catalase negative peroxisomes as a result of inactivation by H2O2. Therefore, the following studies were undertaken to delineate the molecular interactions between both the ALD-gene product (adrenoleukodystrophy protein, ALDP) and VLCS as well as H2O2 degrading enzyme catalase and proteins of peroxisomal beta-oxidation. Studies using a yeast two hybrid system and surface plasmon resonance techniques indicate that ALDP, a peroxisomal membrane protein, physically interacts with VLCS. Loss of these interactions in X-ALD cells may result in a deficiency in VLCS activity. The yeast two-hybrid system studies also indicated that catalase physically interacts with L-bifunctional enzyme (L-BFE). Interactions between catalase and L-BFE were further supported by affinity purification, using a catalase-linked resin. The affinity bound 74-kDa protein, was identified as L-BFE by Western blot with specific antibodies and by proteomic analysis. Additional support for their interaction comes from immunoprecipitation of L-BFE with antibodies against catalase as a catalase- L-BFE complex. siRNA for L-BFE decreased the specific activity and protein levels of catalase without changing its subcellular distribution. These observations indicate that L-BFE might help in oligomerization and possibly in the localization of catalase at the site of H2O2 production in the peroxisomal beta-oxidation pathway.  相似文献   

20.
Effects of pH and heat were examined on the activity of enzyme catalase from human sources (normal and pathological sera, tissue homogenates, purified catalases). The pH optimum, temperature optimum and T50 values of purified catalases were lower than those of normal, or pathological sera and tissue homogenates. On contrast, the activation energy showed its highest value in purified catalase. These findings might be explained by the post-translational modification of enzyme catalase. The obtained results failed to enhance the diagnostic role of serum catalase determination, nevertheless, gave the optimal values of pH and temperature for catalase assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号