首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary goal of cancer immunotherapy is to elicit an immune response capable of eradicating established tumors and preventing tumor metastasis. One strategy to achieve this goal utilizes whole killed tumor cells as the primary immunogen. Killed tumor cells provide a comprehensive source of tumor-associated antigens (TAAs), thereby eliminating the need to identify individual antigens. Unfortunately, killed tumor cells tend to be poorly immunogenic. To overcome this limitation, we covalently conjugated immunostimulatory CpG oligodeoxynucleotides (ODN) to apoptotic tumor cells and examined their ability to induce TAA-specific immune responses. Results indicate that CpG conjugation enhances the uptake of cell-based vaccines by dendritic cells (DCs), up-regulates co-stimulatory molecule expression, and promotes the production of immunostimulatory cytokines. Vaccination with CpG-conjugated tumor cells triggers the expansion of tumor-specific cytotoxic T lymphocytes (CTL) that reduce the growth of established tumors and prevents their metastatic spread. Thus, conjugating CpG ODN to cell-based tumor vaccines is an important step toward improving cancer immunotherapy.  相似文献   

2.
The low immunogenicity of malignant cells is one of the causes responsible for the lack of antitumor immune responses. Thus, development of new therapeutic strategies aimed at enhancing presentation of tumor antigens to T cells is a main goal of cancer immunotherapy. With this aim, we studied the efficacy of administering adjuvants poly(I:C) and agonistic anti-CD40 antibody plus a tumor antigen. Joint intravenous immunization with these adjuvants and a model tumor antigen (ovalbumin) was able to synergistically induce potent and long lasting antitumor T-cell responses. These responses protected against challenge with E.G7–OVA tumor cells in prophylactic short- and long-term vaccination. In a therapeutic setting, repeated intratumor administration of adjuvants plus antigen was able to reject established tumors in all treated animals, leading in some cases to the rejection of both locally treated and untreated tumors. Antitumor immune responses induced by these protocols were mediated not only by T-cells but also by NK cells. In conclusion, combined administration of adjuvants poly(I:C) and anti-CD40 plus a tumor antigen is an efficient strategy for prophylactic and therapeutic antitumor vaccination.  相似文献   

3.
Summary The human immune system is comprised of several types of cells that have the potential to eradicate tumors without inflicting damage on normal tissue. Over the past decade, progress in the understanding of tumor biology and immunology has offered the exciting possibility of treating malignant disease with vaccines that exploit the capacity of T cells to effectively and selectively kill tumor cells. However, the immune system frequently fails to mount a successful defense against cancers despite vaccination with tumor-associated antigens. The ability of these vaccines to generate an abundant supply of armed effector T cells is often limited by immunoregulatory signaling pathways that suppress T cell activation. In addition, many tumors create a local microenvironment that inhibits the function of T cells. The attenuation of these pathways, which facilitate the evasion of tumors from immune surveillance, thus represents a potentially effective approach for cancer immunotherapy. Specifically, it may be of interest to modify the properties of dendritic cells, T cells, and tumor cells to downregulate the expression of proteins that diminish the immune response to cancers. RNA interference (RNAi) techniques have developed into a highly effective means of intracellular gene ‘knockdown’ and may be successfully employed in this way to improve cancer immunotherapies. This strategy has recently been explored both in vitro and in vivo, and has generated significantly enhanced antitumor immunity in numerous studies. Nevertheless, several practical concerns remain to be resolved before RNAi technology can be implemented safely and efficiently in humans. As novel developments and discoveries in molecular biology rapidly continue to unfold, it is likely that this technology may soon translate into a potent form of gene silencing in the clinic with profound applications to cancer immunotherapy.  相似文献   

4.
Tumours employ a variety of immune-evasion and suppression mechanisms to impair development of functional tumor-specific T cells and subvert T cell-mediated immunity in the tumour microenvironment. Adoptive T cell therapy (ACT) aims to overcome these barriers and overwhelm tumor defenses with a bolus of T cells that were selectively expanded ex vivo. Although this strategy has been effective in liquid tumors and melanomas, many tumors appear to be resistant to ACT. Several factors are thought to play into this resistance, including poor engraftment and persistence of transferred cells, tumour cell heterogeneity and antigen loss, poor immune cell recruitment and infiltration into the tumour, and susceptibility to local immunosuppression in the tumor microenvironment. Oncolytic viruses (OV) have been identified as powerful stimulators of the anti-tumour immune response. As such, OVs are inherently well-positioned to act in synergy with ACT to bolster the anti-tumour T cell response. Further, OV vaccines, wherein tumour-associated antigens are encoded into the viral backbone, have proven to be remarkable in boosting antigen-specific T cell response. Pre-clinical studies have revealed remarkable therapeutic outcomes when OV vaccines are paired with ACT. In this scenario, OV vaccines are thought to function in a “push and pull” manner, where push refers to expanding T cells in the periphery and pull refers to recruiting those cells into the tumour that has been rendered amenable to T cell attack by the actions of the OV. In this review, we discuss barriers that limit eradication of tumors by T cells, highlight attributes of OVs that break down these barriers and present strategies for rational combinations of ACT with OV vaccines.  相似文献   

5.
Despite their well-documented immunogenicity, malignant melanomas belong to the most aggressive tumor types. A potential explanation for this is the suboptimal activation of tumor infiltrating T cells. In order to boost immune responses against tumors, a variety of treatment modalities have been tested in animal models and in clinical setting. Antigen-nonspecific approaches (e.g., IFN-alpha and IL-2), as well as active specific immunotherapeutical modalities based on the use of autologous or allogeneic tumor cell-save been investigated in clinical trials of melanoma. The identification of melanoma-associated antigens has opened new avenues in antigen-specific immunotherapy. A promising alternative for the delivery of different forms of melanoma antigens is the application of dendritic cells, the most potent antigen presenting cells capable of eliciting efficient T-cell response. Beside active immunotherapy, immune response against melanoma antigens could be increased through the adoptive transfer of tumor infiltrating lymphocytes or antigen specific T-cell clones. The most important conclusion that can be drawn from the results of published immunotherapy studies is that these modalities are able to induce durable complete tumor regressions,mostly with reasonable toxicity; however, generally only in a minority of patients. This points to the importance of appropriate patient selection, with regard to the expression of the targeted antigens and HLA molecules, as well as to the general immunocompetence of the patients. A crucial and still unsolved question is monitoring immune activation during treatment, although there are promising new tools that could prove useful in this respect. The presence of tumor-reactive CTL in the circulation or in the tumors does not guarantee an efficient immune response. It is important to assess if these T cells are in an activated and functional state. Finally, in several single target antigen-based clinical studies a therapy-induced immunoselection of antigen-negative clones, leading to disease progression, was observed. This could be overcome with the use of antigen cocktails or whole tumor approaches. A better understanding of the mechanisms of action of immunotherapeutical modalities may enhance the success rate of these strategies.  相似文献   

6.
Immunotherapy has been widely investigated for its potential use in cancer therapy and it becomes more and more apparent that the selection of target antigens is essential for its efficacy. Indeed, limited clinical efficacy is partly due to immune evasion mechanisms of neoplastic cells, e.g. downregulation of expression or presentation of the respective antigens. Consequently, antigens contributing to tumor cell survival seem to be more suitable therapeutic targets. However, even such antigens may be subject to immune evasion due to impaired processing and cell surface expression. Since development and progression of tumors is not only dependent on cancer cells themselves but also on the active contribution of the stromal cells, e.g. by secreting growth supporting factors, enzymes degrading the extracellular matrix or angiogenic factors, the tumor stroma may also serve as a target for immune intervention. To this end several antigens have been identified which are induced or upregulated on the tumor stroma. Tumor stroma-associated antigens are characterized by an otherwise restricted expression pattern, particularly with respect to differentiated tissues, and they have been successfully targeted by passive and active immunotherapy in preclinical models. Moreover, some of these strategies have already been translated into clinical trials.  相似文献   

7.
BACKGROUND: A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors. MATERIALS AND METHODS: Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored. RESULTS: Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge. CONCLUSIONS: Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.  相似文献   

8.
The identification of tumor specific antigens has provided important advance in tumor immunology. It is now established that specific cytotoxic T lymphocytes (CTL) and natural killer cells infiltrate tumor tissues and are effector cells able to control tumor growth. However, such a natural antitumor immunity has limited effects in cancer patients. Failure of host defenses against tumor is consecutive to several mechanisms which are becoming targets to design new immunotherapeutic approaches. CTL are critical components of the immune response to human tumors and induction of strong CTL responses is the goal of most current vaccine strategies. Effectiveness of cytokine therapy, cancer vaccines and injection of cells improving cellular immunity have been established in tumor grafted murine models. Clinical trials are underway. To day, interest is particularly focused on cell therapy: injected cells are either "ready to use" effector cells (lymphocytes) or antigen presenting cells able to induce a protective immune reaction in vivo (dendritic cells). The challenge ahead lie in the careful optimization of the most promising strategies in clinical situation.  相似文献   

9.
Conventional treatment approaches for malignant tumors are highly invasive and sometimes have only a palliative effect. Therefore, there is an increasing demand to develop novel, more efficient treatment options. Increased efforts have been made to apply immunomodulatory strategies in antitumor treatment. In recent years, immunizations with naked plasmid DNA encoding tumor-associated antigens have revealed a number of advantages. By DNA vaccination, antigen-specific cellular as well as humoral immune responses can be generated. The induction of specific immune responses directed against antigens expressed in tumor cells and displayed e.g., by MHC class I complexes can inhibit tumor growth and lead to tumor rejection. The improvement of vaccine efficacy has become a critical goal in the development of DNA vaccination as antitumor therapy. The use of different DNA delivery techniques and coadministration of adjuvants including cytokine genes may influence the pattern of specific immune responses induced. This brief review describes recent developments to optimize DNA vaccination against tumor-associated antigens. The prerequisite for a successful antitumor vaccination is breaking tolerance to tumor-associated antigens, which represent "self-antigens." Currently, immunization with xenogeneic DNA to induce immune responses against self-molecules is under intensive investigation. Tumor cells can develop immune escape mechanisms by generation of antigen loss variants, therefore, it may be necessary that DNA vaccines contain more than one tumor antigen. Polyimmunization with a mixture of tumor-associated antigen genes may have a synergistic effect in tumor treatment. The identification of tumor antigens that may serve as targets for DNA immunization has proceeded rapidly. Preclinical studies in animal models are promising that DNA immunization is a potent strategy for mediating antitumor effects in vivo. Thus, DNA vaccines may offer a novel treatment for tumor patients. DNA vaccines may also be useful in the prevention of tumors with genetic predisposition. By DNA vaccination preventing infections, the development of viral-induced tumors may be avoided.  相似文献   

10.
This article reviews the evidence for the danger model in the context of immune response to tumors and the insufficiency of the immune system to eliminate tumor growth. Despite their potential immunogenicity tumors do not induce significant immune responses which could destroy malignant cells. According to the danger model, the immune surveillance system fails to detect tumor antigens because transformed cells do not send any danger signals which could activate dendritic cells and initiate an immune response. Instead, tumor cells or antigen presenting cells turn off the responding T cells and induce tolerance. The studies reviewed herein based on model tumor antigens, recombinant viral vectors and detection of tumor specific T cells by MHC/peptide tetramers underscore the critical role of tumor antigen presentation and the context in which it occurs. They indicate that antigen presentation only by activated but not by cancer or resting dendritic cells is necessary for the induction of immune responses to tumor antigens. It becomes apparent that the inability of dendritic cells to become activated provides a biological niche for tumor escape from immune destruction and seems to be a principal mechanism for the failure of tumor immune surveillance.  相似文献   

11.
In situ T cells in melanoma   总被引:3,自引:0,他引:3  
During the past decade new insights have been gained into the role of T lymphocytes in the host's immune response to cancer in general and to melanoma in particular. Several melanoma-associated antigens (MAA) recognized by T cells have been characterized, and a number of HLA class I- and class II-restricted peptides have been identified. These antigens can be divided into three different groups: tumor-associated testis-specific antigens, melanocyte differentiation antigens, and mutated or aberrantly expressed antigens. These proteins give rise to several antigenic peptides. The number of known melanoma-associated peptides that can induce killing by cytotoxic T-lymphocytes (CTL) exceeds 30 and is still increasing. In line with these findings, clinical data indicate that the immune system is essential in the control of tumor growth. A brisk infiltration of lymphocytes is associated with a favorable prognosis, and complete or partial regression of primary melanoma occurs quite frequently. Furthermore, immunomodulatory therapies have accomplished complete or partial tumor regression in a number of patients. However, the immune response is in most cases inadequate to control tumor growth as tumor progression often occurs. Hence, the coexistence of a cellular immune response in melanoma lesions, demonstrated by the presence of clonally expanded T cells, remains a major paradox of tumor immunology. In the present paper we review current knowledge regarding tumor infiltrating lymphocytes (TIL) in melanoma and discuss possible mechanisms of escape from immune surveillance. Received: 20 March 1999 / Accepted: 3 March 1999  相似文献   

12.
Tumors grow more readily in the brain than in the periphery, in part due to immune privilege. Differences in both afferent and efferent components of the immune response contribute to this lower level of responsiveness. On the afferent side, despite the lack of lymphatic vessels in the brain, antigens from brain arrive in lymph nodes and spleen by several routes, and the route taken may influence the type of response generated. Work with viruses and soluble antigens in mice has shown that the intracerebral location and the volume of the inoculation influence the strength of the cytotoxic T cell response. We examined whether these factors influence the T cell response against experimental brain tumors in mice. Placement of tumor cells in the cerebral ventricles instead of the parenchyma generated an immune response sufficient to increase survival time. A large volume of an intraparenchymal infusion of tumor cells caused spread of cells to the ventricles, and resulted in longer survival time relative to a small volume infusion. Infusion of the same dose of radiolabeled tumor cells in either a small volume or a large volume allowed tracking of potential tumor antigens to the periphery. Both modes of infusion resulted in similar levels of radioactivity in blood, spleen and kidney. Unexpectedly, cells infused intraparenchymally in a small volume, compared to a large volume, resulted in (1) more radioactivity in cervical lymph nodes (parotid and deep cervical lymph nodes), (2) a greater number of CD11b+/Gr1+ myeloid suppressor cells in the tumors, and (3) fewer CD8+ cells within the tumor mass. Consistent with these observations, providing a stronger afferent stimulus by giving a concurrent subcutaneous injection of the same tumor cells infused into the brain increased CD8+ T cell infiltration of the tumor in the brain. These results suggest that the immune response elicited by antigens that drain predominantly to the cervical lymph nodes may be less effective than responses elicited at other lymph nodes, perhaps due to immunosuppressive cells. Directing therapies to the optimal peripheral sites may improve immune responses against brain tumors.  相似文献   

13.
Suppressor T cells arising during the development of certain murine methylcholanthrene-induced fibrosarcomas have previously been shown capable of limiting only those effector responses generated against the homologous tumor. Thus, S1509a-induced suppressor T cells inhibit immune reactivity only to the S1509a tumor in S1509a immune mice and have no effect on the rejection of SAI tumors in SAI-immune animals. In contrast to this is the cross-reactivity of effector cells in this system, whereby animals rendered immune to either the S1509a or SAI sarcoma are equally capable of rejecting a challenge of the opposite tumor. The specificity of suppression has been further defined in the present study, which demonstrates that S1509a-induced suppressor cells can inhibit responsiveness only to the S1509a sarcoma, even in the simultaneous presence of both the S1509a and SAI tumors. Furthermore, the suppressor factor that is obtainable from suppressor T cells demonstrates a similar precise specificity in its ability to limit selectively reactivity only against the inducing tumor, regardless of the simultaneous expression of antigens on other tumors recognized by cross-reactive effector cells. These results suggest that the antigenic determinants recognized by effector and suppressor T cells are different, and may provide a model for further dissection of suppressor cell function in vivo.  相似文献   

14.
Immune suppression remains a consistent obstacle to successful anti-tumor immune responses. As tumors develop, they create a microenvironment that not only supports tumor growth and metastasis but also reduces potential adaptive immunity to tumor antigens. Among the many components of this tumor microenvironment is a population of dendritic cells which exert profound immune suppressive effects on T cells. In this review, we discuss our recent findings related to these tumor-associated dendritic cells and how targeting them may serve to generate more durable anti-tumor immune responses.  相似文献   

15.
Recently, it has become more and more obvious that not only CD8+ cytotoxic T lymphocytes, but also CD4+ T helper cells are required for the induction of an optimal, long-lasting anti-tumor immune response. CD4+ T helper cells, and in particular IFN-gamma-secreting type 1 T helper cells, have been shown to fulfill a critical function in the mounting of a cancer-specific response. Consequently, targeting antigens into MHC class II molecules would greatly enhance the efficacy of an anti-cancer vaccine. The dissection of the MHC class II presentation pathway has paved the way for rational approaches to achieve this goal: novel systems have been developed to genetically manipulate the MHC class II presentation pathway. First, different genetic approaches have been used for the delivery of known epitopes into the MHC class II processing pathway or directly onto the peptide-binding groove of the MHC molecules. Second, several strategies exist for the targeting of whole tumor antigens, containing both MHC class I and class II restricted epitopes, to the MHC class II processing pathway. We review these data and describe how this knowledge is currently applied in vaccine development.  相似文献   

16.
Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry–based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer–derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I–associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell–based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.  相似文献   

17.
Cytotoxic T cells can recognize and kill tumor cells that present peptides derived from tumor-associated antigens (TAA) on their surface when associated with major histocompatibility complex (MHC) class I molecules. However, immune responses to tumor-associated antigens are often suppressed by a tumor-induced state of immune anergy. Previous work has attempted to overcome tumor-induced T cell anergy by the direct injection of vectors carrying genes encoding one of a variety of cytokines. Polyclonal stimulation of T cells, preferably via the TCR complex, results in a cascade of cytokines associated with T cell activation and thus may be better able to overcome T cell anergy. We have previously reported the use of the highly attenuated MVA poxvirus to express on tumor cells, in vitro and in vivo, antibodies specific for the CD3epsilon chain (KT3). When injected into growing tumors, these constructs induce the activation of immune effector cells and result in rejection of the tumor. A variety of recombinant adenovirus (Ad) vectors expressing immunostimulatory and/or immunoattractant molecules have now been produced. With this collection of viruses, we have carried out in vivo analyses of combinations of vectors in tumor therapy experiments. For example, we have tested, in murine tumor models, the combination of MVA-KT3 with Ad expressing recently identified cytokines [for example interleukin-12 (IL-12), IL-18] as well as chemokines (e.g. RANTES, MIP1beta). One combination, MVA-KT3/Ad-IL-12/Ad-MIP1beta causes rejection of 100% of growing RENCA tumors. Much attention has been focused on cancer gene therapy using gene transfer of single agents. These data show that antigenic stimulation via the MHCI/TCR-CD3+cytokine+chemokine combination may provide a new and promising approach to cancer gene therapy which is more likely to bypass tumor immunosuppression mechanisms.  相似文献   

18.
Tumor vaccines     
F K Stevenson 《FASEB journal》1991,5(9):2250-2257
Vaccination against tumor, either as a prophylactic procedure or as a mode of treatment, has been a distant goal of immunologists for many years. Ideally, the less specific therapies such as chemotherapy would be replaced by an anti-tumor immune response in the host that would be present on a continuing basis. However, progress has been hampered by a lack of understanding of the role of viruses in human tumor development and the molecular nature of tumor-associated antigens. Recent developments using the techniques of molecular biology and monoclonal antibody reagents are beginning to remedy this deficiency so that vaccination has become a real possibility for certain human cancers. The natural fluctuations in growth rates of some human tumors, and the observation that tumors can occasionally remain dormant for years, has led to the idea that the host has an intrinsic ability to control tumor growth, and that this ability is a property of the immune system. Attempts to enhance this putative control are being made by treating the host with defined biological modifiers that stimulate cells involved in immunity in vivo, and by seeking and expanding such cells in vitro before reinfusing them into the host. These attempts to harness the immune system to attack tumor cells that have evaded the host's defenses might be considered optimistic, but they will at least tell us a great deal about tumor cell behavior and the ability of the host to influence it.  相似文献   

19.
The role of immunity in cancer has been abundantly demonstrated in murine tumor models as well as in man. Induction of clinically effective antitumor immune responses, based on this information, in patients with cancer however, remains elusive. This is not because tumors lack recognizable antigens [in fact there is evidence that there are thousands of potential novel targets in each tumor cell] but rather due to the fact that the induction of responses is not adequate nor particularly well understood. Tumors seem to be rather effective at limiting immune responses. Many of the molecularly defined antigens that have been detected on tumor cells are derived from self-proteins and as such are subject to tolerizing mechanisms. Such tumors have also developed escape mechanisms capable of evading or suppressing immune responses. Understanding the role of dendritic cells during the effector phase of the immune response and the complex interactions of stromal, immune, and tumor cells in the tumor microenvironment represent the next challenges to be understood for tumor immunology.This is a summary of the work presented at the First Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Peloponnese, Greece  相似文献   

20.
The potential role of antibodies and T lymphocytes in the eradication of cancer has been demonstrated in numerous animal models and clinical trials. In the last decennia new strategies have been developed for the use of tumor-specific T cells and antibodies in cancer therapy. Effective anti-tumor immunotherapy requires the identification of suitable target antigens. The expression of tumor-specific antigens has been extensively studied for most types of adult tumors. Pediatric patients should be excellent candidates for immunotherapy since their immune system is more potent and flexible as compared to that of adults. So far, these patients do not benefit enough from the progresses in cancer immunotherapy, and one of the reasons is the paucity of tumor-specific antigens identified on pediatric tumors. In this review we discuss the current status of cancer immunotherapy in children, focusing on the identification of tumor-specific antigens on pediatric solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号