共查询到19条相似文献,搜索用时 46 毫秒
1.
孟庆焕;祖元刚;郭晓瑞;段喜华 《植物研究》2013,33(2):181-185
在增强UV-B辐射下,以3年生兴安落叶松幼苗为实验材料,研究了外源NO供体硝普钠(Sodium nitroprusside,SNP)对幼苗的光合色素(Chla、Chlb和Car)和叶绿素荧光参数的影响。方差分析结果表明0.5 mmol·L-1的SNP对增补UV B胁迫下的兴安落叶松幼苗产生显著影响。0.5 mmol·L-1的SNP能够显著抑制增补UV-B辐射后光合色素、Fv/Fm、ΦPSⅡ、Fv′/Fm′和qP的明显下降以及Chla /Chlb、Fo和NPQ的升高。表明了外源NO能够减轻UV-B辐射胁迫下兴安落叶松幼苗光合反应中心的生理损伤,从而增强兴安落叶松幼苗对增补UV-B辐射胁迫环境的适应能力。 相似文献
2.
连续两年UV-B辐射增强对割手密叶绿素含量的影响 总被引:3,自引:0,他引:3
研究了大田栽培和自然光条件下,连续两年模拟紫外辐射(UV-B,280~315 nm)增加对92-11和93-25两个割手密无性系叶绿素含量的影响。结果表明,割手密92-11在UV-B辐射的影响下,叶绿素含量降低,而割手密93-25抗性很强,在增加了5 kJ/m2UV-B辐射下,其叶绿素含量增加。割手密叶绿素含量对UV-B辐射的响应具有种内差异。割手密92-11对紫外辐射的抗性在2004年比2003年强,而割手密93-25则相反。生育期中开花期受UV-B辐射影响最大,然后是分蘖期,伸长期抗性较强。 相似文献
3.
以中国科学院海北高寒草甸生态系统定位站自然生长的麻花艽(Gentiana straminea Maxim.)为材料,进行了不同月份和草盛期不同天数的短期增补和过滤UV-B辐射试验,比较分析叶片光合色素含量和叶片厚度等的变化.结果表明:(1)生长季内麻花艽叶片叶绿素a+b含量呈波动变化的趋势,7月份含量均较高;草盛期不同天数处理时,UV-B辐射对麻花艽叶片叶绿素a+b含量的影响不大.(2)生长季内麻花艽叶片类胡萝卜素含量也是7月份较高,短期增补UV-B辐射有降低其含量的趋势.(3)增加UV-B辐射能够降低Chl a/b值;自然UV-B辐射下Car/Chl比值能维持一个较高水平,是对强辐射的适应.(4)随处理时间延长,麻花艽叶片厚度有降低趋势,其叶缘出现一些发黄、变黑、变透明等受害症状,叶片能通过增加叶片厚度来适应增强的UV-B辐射.可见,生长于高海拔地区的植物麻花艽虽然对UV-B辐射表现出诸多的生理适应特性,但依然不可避免地受到其损伤. 相似文献
4.
为了探讨植物叶片对UV-B辐射增强的响应机制,采用叶绿素荧光测定技术,分别测定在人工模拟低剂量UV-B(2.4μW/cm~2)辐射条件下乌拉尔甘草叶片的叶绿素荧光诱导动力曲线、初始荧光(F_0)、最大荧光(F_m)、光合机构比活性参数(ABS/RC、TR_o/RC和ET_o/RC)和性能指数等变化规律。结果表明:(1)低剂量UV-B辐射未引起甘草叶片O-J-I-P叶绿素荧光诱导曲线中的相数发生改变,UV-B辐射对PSⅡ的影响主要发生在其受体侧,而非供体侧;(2)低剂量UV-B辐射引起了甘草叶片光合系统F_v/F_m以及F_m、F_0的明显变化,同时也影响了光合机构的开放程度和电子从Q_A向Q_B传递效率,从而影响了光转化效率;相应性能指数(PI_(abs)和PI_(total))的改变亦验证了此结果。研究认为,低剂量UV-B辐射抑制乌拉尔甘草叶片光合系统Ⅱ受体侧Q_A至PQ之间的电子传递效率,从而影响了Q_A之后的光化学反应及非光化学反应。 相似文献
5.
增强UV-B辐射对喜树幼苗生物量和两种生物碱含量的影响 总被引:1,自引:0,他引:1
通过盆栽试验,以自然辐射为对照,研究人工增强UV-B辐射下(5.0 μW/cm2)喜树幼苗生物量和各器官中喜树碱、10-羟基喜树碱含量的变化,试验结果表明:(1 )UV-B辐射处理前20d,处理组幼苗的全株以及各器官的鲜重与对照相差很少.至辐射处理的40d,处理组幼苗的全株以及各器官的生物量均高于正常条件的幼苗.试验后期,处理组单株生物量降低,长时间的UV-B辐射使喜树植株矮化、基茎加粗,同时还改变了喜树生长过程中干物质的分配,较多的干物质分配到喜树的茎和根中,而较少进入叶中;(2)UV-B辐射增强能明显增加喜树地上器官中喜树碱的含量,而对10-羟基喜树碱含量影响不明显.(3)各器官中生物碱含量与生物量的积累速率具有一定的相关性,生物量增长过快时单位质量植物体中的生物碱含量下降. 相似文献
6.
通过对UV-B辐射胁迫下亚热带典型木本杨桐幼苗的生长及光合生理的研究,探讨植物对于UV-B辐射胁迫的生理响应及适应性机理,进而揭示UV-B辐射变化对亚热带森林树种的影响.实验设置UV-B辐射滤光组、自然光对照组以及辐射增强组,选择亚热带典型树种杨桐(Cleyera japonica Thunb.)幼苗为实验材料.研究结果表明:(1)增强UV-B辐射会降低杨桐幼苗的叶绿素含量,而降低辐射则会显著促进叶绿素的增加,且这种胁迫在时间上具有积累性.(2)增强或降低辐射强度都会抑制杨桐地径的生长,增强辐射会产生更显著的抑制;降低辐射强度会对杨桐幼苗的株高生长产生促进作用,反之,则会抑制其生长.3个测定期数据综合分析显示随着处理时间的加长,这种胁迫作用有减小的趋势.(3)对光响应曲线的分析表明相对于自然光条件下的UV-B辐射,降低其强度对杨桐幼苗光合作用有显著的促进作用,反之则会抑制,不过抑制作用并不显著;对于光合特征参数的分析表明增强或降低UV-B辐射会显著降低杨桐幼苗的光饱和点(LSP)和光补偿点(LcP),而对最大净光合速率(Amax)、表观光合量子效率(AQY)、暗呼吸速率(Rd)影响均不显著,表明辐射胁迫对杨桐幼苗利用光能的效率影响不大,从而也并未对杨桐的光合作用产生显著性的伤害,但是由于森林树种的多年生特性,这种影响将是积累性的或延迟的,UV-B所造成的光合作用或光能利用率的微小变化都可能会积累成长期影响.因此,对森林树种进行长期研究是必要的. 相似文献
7.
《广西植物》2010,30(4)
在云南玉溪烟区种植烤烟海拔最高(1806.0m)的通海县,通过盆栽烤烟K326试验,研究了在滤减自然的太阳UV-B辐射强度25%、50%和65%条件下,UV-B辐射对烟叶发育过程中可溶性蛋白、光合色素和类黄酮的影响。结果表明:随叶龄增加,可溶性蛋白含量下降,光合色素降解,类黄酮在老叶中积累,蛋白质在生理成熟期对UV-B辐射最敏感。与对照相比,减弱UV-B辐射处理降低了烟叶类黄酮和可溶性蛋白含量,但光合色素含量上升;较低的UV-B辐射降低了叶绿素的降解速度。结果从一侧面说明UV-B辐射对烟叶蛋白质的合成是有益的,类黄酮和叶绿素的变化是对UV-B辐射变化的适应性反应,类黄酮与蛋白质之间可能存在一定的偶联关系。 相似文献
8.
采用滤除自然光谱中UV-B辐射成分的方法, 探讨了高山植物美丽风毛菊(Saussurea superba)光合机构对青藏高原强UV-B辐射的响应和适应特性。结果表明, 强太阳光中的UV-B成分能引起净光合速率的降低。连续16天不同天气下的观测表明, 滤除UV-B处理时3 min暗适应的光化学量子效率有升高的趋势; 晴天下稳态光化学效率的分析也显示滤除UV-B处理的实际光化学量子效率和光化学猝灭系数有升高趋势, 意味着自然光中的UV-B成分可限制美丽风毛菊叶片PSII反应中心的激发能捕获效率。PSII有效光化学量子效率的增加和非光化学猝灭系数的降低进一步表明, UV-B辐射能导致有效光化学效率的降低和非光化学能量耗散的增加。由上可知, 自然强UV-B辐射是限制美丽风毛菊叶片光合作用的一个因素。滤除UV-B辐射处理对光合色素含量的影响较小, 无论以叶面积还是叶鲜重为基础的滤除UV-B处理仅有微弱的增加趋势, 说明强UV-B辐射具有加速光合色素的光氧化进程, 促进细胞成熟和叶片衰亡的潜在作用。同样UV-B吸收物质的含量也几乎没有变化, 表明强太阳辐射环境下生活的高山植物美丽风毛菊叶表皮层中已具有较多的紫外线屏蔽物质, 足以抵御目前环境中强太阳UV-B辐射可能引起的伤害, 较少受UV-B辐射波动的影响。 相似文献
9.
在UV-B辐射增强条件下,研究了两个不同水稻品种叶片光合作用系统的变化。结果表明:(1)UV-B辐射胁迫使两个水稻品种叶片总叶绿素含量,叶绿素a与叶绿素b(Chla/Chlb)比值下降,叶绿素a荧光诱导动力学参数改变,光系统Ⅱ活性受抑制,光合作用效率降低,其中Dular受抑制的程度较Lemont大。(2)利用扫描电镜(SEM)和透射电镜(TEM)进一步研究表明,UV-B辐射胁迫使水稻叶片气孔器受破坏,叶绿体结构变形,基粒片层排列稀疏紊乱,两个供试品种结构上受破坏的程度与它们光合生理受抑制的程度一致。(3)叶片边缘受破坏的程度较主脉两侧轻,这可能与硅质乳突密度较大有关。(4)两个供试品种叶片表面主脉两侧的硅质乳突数量及其受UV-B辐射影响的特性存在明显的差异,Lemont叶表面的乳突分布密度较大,且在UV-B辐射胁迫下有增加的趋势,而Dular则相反。这说明硅质体的累积特性可能是水稻对UV-B辐射胁迫的适应机制之一。 相似文献
10.
选用"ML7113"小麦幼苗为材料,分别采用He-Ne激光(5mW·mm-2)和增强UV-B(10.8 kJ/m-2·d-1)辐射以及两者的复合辐照进行处理,利用PAM-2100便携式叶绿素荧光仪测定小麦幼苗在不同处理天数(5、6、7、8)下叶绿素荧光特性的变化。结果表明:增强UV-B辐射后,随着处理时间的延长,小麦幼苗的Fo、Fm、Fv/Fm、qP、ФPSⅡ、叶绿素含量的值均逐渐下降,qN值均逐渐升高,从而不断减弱小麦幼苗的叶绿体荧光特性;而低剂量的He-Ne激光辐照后能够在一定程度上修复经UV-B辐射后对小麦幼苗叶绿素荧光所造成的损伤。 相似文献
11.
The mat-forming cyanobacterium Phormidium murrayi West and West isolated from a meltwater pond on the McMurdo Ice Shelf was grown in unialgal batch cultures to evaluate the temperature dependence of ultraviolet radiation (UVR) effects on pigment composition, growth rate, and photosynthetic characteristics. Chlorophyll a concentrations per unit biomass were generally reduced in cells grown under UVR (low UV-A plus UV-B). In vivo absorbance spectra showed that the carotenoid/chlorophyll a ratio increased as a function of photosynthetically available radiation (PAR) and UVR exposure and varied inversely with temperature. Ultraviolet inhibition of growth (percentage reduction of μmax at each temperature) increased linearly with decreasing temperature, consistent with the hypothesis that net inhibition represents the balance between temperature-independent photochemical damage and temperature-dependent biosynthetic repair. There was no significant effect of UVR on photosynthesis over the first hour of exposure, but significant UV inhibition was observed after 5 days. Unlike growth, however, there was no apparent effect of temperature on the magnitude of UV inhibition of photosynthesis. These results imply that assays of UVR effects on photosynthesis are not an accurate guide to growth responses and that low ambient temperatures can have a major influence on the UV sensitivity of polar organisms. In a set of assays at 20° C (preacclimation under 300 μmol photons·m?2·s?1 and 20° C), growth was strongly depressed by UVR over the first day of exposure but then gradually increased over the subsequent 4 days, approaching the growth rates in the minus UVR control. This evidence of acquired tolerance indicates that the damaging effects of UVR will be most severe in environments where there is a mismatch between the timescale of change in exposure and the timescale of UV acclimation. 相似文献
12.
Norflurazon (Nf) and fluridone (Fd) are phytoene desaturase inhibitor herbicides that are widely used for the control of grasses and invasive aquatic weeds, respectively. These herbicides enter aquatic environments where they can negatively affect non-target plant species (e.g. algae). Their toxicity towards algae may be modified by abiotic factors such as light intensity, temperature, pH and nutrients. Investigating the effect of low temperature on the toxicity of Nf and Fd is particularly important because both temperature and herbicides affect some of the same physiological process (e.g. carotenoid biosynthesis). Here we demonstrate that Nf reduced photosynthesis in the green alga Chlamydomonas reinhardtii more strongly at 15 than at 25ºC, while Fd showed stronger effects at 25 than at 15ºC. Neither herbicide significantly inhibited photosynthesis at 8ºC. Although the overall pigment content decreased with lower temperature, there was an increase in photo-protective carotenoids relative to chlorophylls at both 15 and 8ºC in the absence of herbicides. Moreover, most of the measured pigments decreased markedly in the presence of Nf and Fd at 15 and 25ºC, including β-carotene which fell to below detection limits. The fatty acid composition was modified by temperature and the level of unsaturation noticeably increased at 15 compared with 25ºC. At 8ºC, however, despite a 2.4 times decrease in fatty acid content, the unsaturation level was similar to 25ºC acclimated cells. Monounsaturated fatty acids increased concomitant with a decrease in polyunsaturated fatty acid in the 2.5 µM Nf treatment at 25ºC. Differences in the effect of Nf and Fd on photosynthesis at 15 and 25ºC can be attributed to the marked decrease in carotenoids, which play an important role in photoprotection. At 8ºC, the apparent lack of inhibitory effects compared with control cultures could be due to enhanced photoprotection and/or decreased uptake of herbicides by the alga. 相似文献
13.
The effect of UV-B on the photosynthetic apparatus of coniferous trees: Picea abies (L.) Karst., Picea pungens (Engelm.), Pinus sylvestris (L.), Pinus cembra (L.) and Abies alba (Mill.) was investigated. Three and four-year-old plantlets coming from different latitudes, longitudes and altitudes were used. The experiment was carried out in greenhouse. Two doses of ultraviolet-B irradiation were applied: control=0, low dose=11.32 and high dose=22.64 kJ·m−2·d−1 UV-BBE (biologically effective irradiance of UV-B). Measurements of chlorophyll fluorescence, gas exchange, chlorophyll and flavonoids content were carried out. Response of forest trees to an increased UV-B radiation depends on species, location of place of pantalets collecting and UV-B dose. Pinus cembra, Picea abies and Pinus sylvestris from high altitude (1000 m a.s.l.) were less sensitive to UV-B than these from plain location. The altitude determined adaptation of forest coniferous trees to an enhanced UV-B radiation much more than the latitudinal gradient. Permanent discoloration was observed only on the young needles of the fir plantlets that were grown in light limiting conditions. Photosynthetic parameters were affected by the UV-B radiation. Both maximal and the steady state fluorescence of chlorophyll were reduced as a consequence of elevated UV-B in case of some species. The chlorophyll content was enhanced, increased or was not affected according to species and to locations. The flavonoids content in the needles increased with chlorophyll content at both UV-B treatments. An opposite trend was found in the control. The increased content of screening pigments in the needles of all the tested coniferous trees was detected. Picea abies and Picea pungens photosynthesis response curves to the light and to the intercellular CO2 concentration did not change significantly under increased UV-B because of higher concentration in screening pigments in leaves. The increased concentration of flavonoids in forest litter may lead to changes in the biogeochemical cycle in the forest ecosystem. 相似文献
14.
We photosynthetically characterized two rice cultivars - salt-sensitive ‘Annapurna’, and salt-tolerant ‘Dongjin’ - growing
under NaCl stress. Both cultivars showed an increase in Fo/Fm (the ratio of initial to maximal chlorophyll fluorescence) and a decrease in Fv/Fm (an indicator of the photochemical efficiency of PS II). In particular, the Fv value for Annapurna significant declined while Fo/Fm was enhanced when plants were exposed to salt stress for 4 d. Annapurna also exhibited more rapid decreases in the coefficients
for photochemical quenching (qQ) and non-photochemical quenching (qNP) than did Dongjin. In contrast, zeaxanthin formation
was largely influenced by exposure to light rather than to high salinity, with Annapurna having a higher rate of production
compared with Dongjin. When both cultivars were exposed to salt stress for 2 d, Annapurna had a much lower rate of photosynthetic
oxygen evolution, corresponding to only 46% of the control; the rate for Dongjin was 90% of the control. Salt stress in both
cultivars induced the accumulation of two osmoprotectants, glycinebetaine and proline, the rate being higher for the latter.
These results indicate that Annapurna is more sensitive than Dongjin to salt stress, in terms of its deterioration in photosynthetic
function. 相似文献
15.
Senescence induced loss in pigments and proteins of detached maize (Zea mays L. cv. Col) leaves was significantly enhanced on the exposure of leaves to different ranges of ultraviolet (UV) radiation. Compared to UV-A (320-400 nm) and UV-B (280-320 nm), the UV-C (200-320 nm) was the most damaging for the pigments and macromolecules. A severe decline in photosystem (PS) 2 mediated photoreduction during senescence of detached leaves exposed to UV irradiation suggested a damage of the system. The PS1 mediated photoreduction of methylviologen with 2,6-dichlorophenol indophenol as electron donor was stimulated by UV-A and UV-B radiations, suggesting a reorganisation of the PS1 complex. These results were fortified by the values of fast and slow kinetics of chlorophyll (Chl) a fluorescence transients. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
16.
14CO2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (PS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while PS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m-2 s-1 resulted in a very drastic drop of PS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m-2 s-1) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m-2 s-1. A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean. 相似文献
17.
The impact of increased solar UV-B radiation on photosynthetic characteristics of rice (Oryza sativa L.) cultivars ADT36, IR20, IR50, J13 and MDU4 has been studied. In all the cultivars concentrations of photosynthetic pigments decreased under increased UV-B radiation. Even low enhancement of UV-B reduced the photochemical activities in all the cultivars except MDU4 and changed chlorophyll a fluorescence. Enhanced UV-B radiation caused a dose-dependent changes in chloroplast proteins in most of the cultivars. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
18.
Lines of winter hexaploid Triticale and their F1 and F2 hybrids differing in morphological structure, pigment contents, photosynthetic productivity, and grain crops were studied. F1 hybrids received by crossing of Triticale lines contrasting in pigment contents showed in some cases a heterosis effect for chlorophyll (Chl) content per unit leaf area. Variation analysis demonstrated a polygenic control of Triticale pigment contents, and different rate of increase in F2 generation. We found maternal type of heritability of Chl b content and Chl content in light-harvesting complex of photosystem 2. 相似文献
19.
Nellis Marín Francisco Morales César Lodeiros Eric Tamigneaux 《Journal of applied phycology》1998,10(4):405-411
A wild strain of Dunaliella salina was isolated from a solar evaporation salt-pond in Araya (Estado Sucre, Venezuela) and grown in batch culture using relatively low illumination (80 μmol photon m-2 s-1). After the alga had been adapted to various salinities (9, 14, 21% w/v NaCl), the influence of nitrate concentration (882, 435, 212 μmol L-1 N) on growth rate and chlorophyll a and total carotenoid concentrations was measured. Low nitrate concentration negatively affected growth, but enhanced carotenoid accumulation. A slight increase in carotenogenesis was also observed in alga grown at the highest salinity. There were no significant additive or synergistic effects of salinity and nutrient concentrations on the concentrations of chlorophyll a or total carotenoid. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献