首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bats dispersed widely after evolving the capacity for powered flight, and fossil bats are known from the early Eocene of most continents. Until now, however, bats have been conspicuously absent from the early Eocene of mainland Asia. Here, we report two teeth from the Junggar Basin of northern Xinjiang, China belonging to the first known early Eocene bats from Asia, representing arguably the most plesiomorphic bat molars currently recognized. These teeth combine certain bat synapomorphies with primitive traits found in other placental mammals, thereby potentially illuminating dental evolution among stem bats. The Junggar Basin teeth suggest that the dentition of the stem chiropteran family Onychonycteridae is surprisingly derived, although their postcranial anatomy is more primitive than that of any other Eocene bats. Additional comparisons with stem bat families Icaronycteridae and Archaeonycteridae fail to identify unambiguous synapomorphies for the latter taxa, raising the possibility that neither is monophyletic as currently recognized. The presence of highly plesiomorphic bats in the early Eocene of central Asia suggests that this region was an important locus for the earliest, transitional phases of bat evolution, as has been demonstrated for other placental mammal orders including Lagomorpha and Rodentia.  相似文献   

2.
Evolution of Placentation in Primates: Implications of Mammalian Phylogeny   总被引:1,自引:0,他引:1  
Primates are quite unique among placental mammals in that the two extreme types of placentation are present within a single order. Strepsirrhines (lemurs and lorisiforms) have non-invasive epitheliochorial placentation, whereas haplorhines (tarsiers and higher primates) have highly invasive haemochorial placentation. Resemblance in placenta type in fact provided the first evidence that tarsiers are linked to higher primates and distinct from lemurs and lorisiforms. Tree-shrews differ from both primate subgroups in having moderately invasive endotheliochorial placentation, while colugos have invasive haemochorial placentation like haplorhines. All three kinds of placentation have been identified as primitive for placentals by different authors, but until recently the prevailing interpretation has been that non-invasive epitheliochorial placentation is primitive and “less efficient”. Opposing this interpretation, Martin (Primate origins and evolution: a phylogenetic reconstruction, 1990) proposed that moderately invasive endotheliochorial placentation is primitive. Epitheliochorial placentation is unlikely to be primitive because it is predominantly associated with large body size, relatively long gestation periods and precocial offspring. Furthermore, some strepsirrhines and other placental mammals with epitheliochorial placentation retain indications of former invasiveness of the placenta. The recent availability of comprehensive molecular phylogenies for placental mammals has provided an independent framework to determine the most parsimonious interpretation of the evolution of placenta types and other reproductive features. It has consistently emerged that epitheliochorial placentation is best explained as a derived condition, although opinions differ as to whether the ancestral condition for placental mammals (and hence for primates) was endotheliochorial or haemochorial. It is argued that on balance the most likely ancestral condition is endotheliochorial. Comparative evidence across placentals clearly indicates that epitheliochorial placentation is not less efficient than more invasive forms of placentation, at least with respect to growth in overall fetal body mass. The ratio of neonate mass to gestation period (a simple indicator of average daily maternal investment in fetal growth) shows no difference according to placenta type. Differential evolution of placentation is hence presumably linked to immunological factors, parent/offspring conflict and/or genomic imprinting.  相似文献   

3.
The foot, perhaps more than any other region of the primate body, reflects the interaction of positional behaviors with the geometric properties of available supports. The ability to reverse the hind foot during hindlimb suspension while hanging from a horizontal support or descending a large diameter vertical trunk has been noted in many arboreal mammals, including primates. Observations of Varecia variegata in the wild and under seminatural conditions document hindlimb suspension in this lemurid primate. The kinematics and skeletal correlates of this behavior are examined. Analogy is made with the form and function exhibited by nonprimate mammalian taxa employing this behavior. Examples of carnivores and rodents display very similar adaptations of the tarsals while other mammals, such as the xenarthrans, accomplish a similar end by means of different morphologies. However, a suite of features is identified that is shared by mammals capable of hind foot reversal. Hindlimb suspension effectively increases the potential feeding space available to a foraging mammal and represents a significant, and often unrecognized, alternative adaptive strategy to forelimb suspension and prehensile-tail suspension in primates. Am J Phys Anthropol 103:85–102, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The present publication reviews the broader evolutionary implications of our long‐term study of primate musculature. It summarizes the implications of the study for our understanding of the use of myological characters for phylogenetic reconstruction, for assessing the importance of homoplasy and reversions in evolution, and for our understanding of Dollo's law, the notion of ‘direction’ in evolution, the common myth of human complexity, the tempo and mode of primate and human evolutionary history, adaptive radiations, the notion that ‘common’ equals ‘primitive’ and the influence of morphogenesis on the variability of head, neck, pectoral and upper limb muscles. Among other results our study shows that myological characters are useful for phylogenetic reconstruction. The results also stress the importance of homoplasy and of evolutionary reversions in morphological evolution, and they provide examples of reversions that violate Dollo's law due to the retention of ancestral developmental pathways. They also show that contrary to the idea of a ‘general molecular slow‐down of hominoids’ the rates of muscle evolution at the nodes leading to and within the hominoid clade are higher than those in most other primate clades. However, there is no evidence of a general trend or ‘directionality’ towards an increasing complexity during the evolutionary history of hominoids and of modern humans in particular, at least regarding the number of muscles or of muscle bundles. The rates of muscle evolution at the major euarchontan and primate nodes are different, but within each major primate clade (Strepsirrhini, Platyrrhini, Cercopithecidae and Hominoidea) the rates at the various nodes, and particularly at the nodes leading to the higher groups (i.e. those including more than one genus) are strikingly similar. Our results also support, in general terms, the assumption that ‘common is primitive’ and they lend some support for the ‘vertebrate‐specific model’ in the sense that during the divergent events that resulted in these four major primate clades there was more emphasis on postcranial changes than on cranial changes. Our study of primates does not, however, support suggestions that the distal structures of the upper limb are more prone to variation than the proximal ones, or that the topological origins of the upper limb muscles are more prone to evolutionary change than their insertions.  相似文献   

5.
The geographic distribution of species is the typical metric for identifying priority areas for conservation. Since most biodiversity remains poorly studied, a subset of charismatic species, such as primates, often stand as surrogates for total biodiversity. A central question is therefore, how effectively do primates predict the pooled species richness of other mammalian taxa? We used lemurs as indicator species to predict total non-primate mammal community richness in the forest ecosystems of Madagascar. We combine environmental and species occurrence data to ascertain the extent to which primate diversity can predict (1) non-primate mammal α-diversity (species richness), (2) non-primate complementarity, and (3) non-primate β-diversity (species turnover). Our results indicate that primates are effective predictors of non-primate mammal community diversity in the forest ecosystems of Madagascar after controlling for habitat. When individual orders of mammals are considered, lemurs effectively predict the species richness of carnivorans and rodents (but not afrosoricids), complementarity of rodents (but not carnivorans or afrosoricids), and all individual components of β-diversity. We conclude that lemurs effectively predict total non-primate community richness. However, surrogate species alone cannot achieve complete representation of biodiversity.  相似文献   

6.
The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small‐to‐large‐bodied, diverse taxa has driven a hypothesis that the end‐Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown‐placental mammal unambiguously pre‐dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end‐Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.  相似文献   

7.
记述了在山东省五图盆地下始新统发现的一种“伪齿兽集目”化石 :千禧福兽 (Olbither iummillenariusumgen.etsp .nov.)。千禧福兽其颊齿形态基本上与原始奇蹄类相似 ,同时也具有伪齿兽类的一些特征 ,如m1~ 2下次尖没有与下内尖直接连接的下次脊。千禧福兽的M3次尖具前、后棱 ,这一点似与原始的蹄兔Seggeurius相似。因此 ,新种在目一级的归类有困难 ,暂置于McKenna ( 1 975 )创立的“伪齿兽集目”(“MirorderPhenacodonta”)。千禧福兽的发现进一步证明了奇蹄类可能起源于亚洲和北非类似伪齿兽类 (phenacodontids)的古有蹄类 ,福兽仅是类似伪齿兽类的古新世古有蹄类向奇蹄类进化过程中的一叉支的代表。  相似文献   

8.

Background

Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu). It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption.

Methodology/Principal Findings

Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability.

Conclusions/Significance

These results conclude that the molecular evolution of Tetherin may be attributed to the host–virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive adaptive evolution.  相似文献   

9.
Fifty-five million years ago, a furry, hoofed mammal about the size of a dog ventured into the shallow brackish remnant of the Tethys Sea and set its descendants on a path that would lead to their complete abandonment of the land. These early ancestors of cetaceans (dolphins, porpoises, and whales) thereafter set on an evolutionary course that is arguably the most unusual of any mammal that ever lived. Primates and cetaceans, because of their adaptation to exclusively different physical environments, have had essentially nothing to do with each other throughout their evolution as distinct orders. In fact, the closest phylogenetic relatives of cetaceans are even-toed ungulates.  相似文献   

10.
灵长类主要组织相容性复合体Ⅰ类基因进化概述   总被引:3,自引:1,他引:2  
王雪霞  何小维 《遗传》2006,28(5):611-616
主要组织相容性复合体(MHC)是和免疫反应直接相关的基因群。MHC I类分子的多态性和病原体的多变性相对应,它是个体在重大传染疾病中存活下来的重要依据。在灵长类动物进化过程中,由于分化时间的差异和生存压力的不同,造成了各物种MHC I类基因不同的存在状态,使它们的MHC I 类基因在基因数量和基因功能上有所差异,同时还产生了物种特异性基因。本文描述了灵长类MHC I类基因的总体变化特征,并着重讨论了6个典型MHC I 类基因在各典型灵长类物种中的特点及关联性。  相似文献   

11.
Although the majority of extant primates are described as "quadrupedal," there is little information available from natural habitats on the locomotor and postural behavior of arboreal primate quadrupeds that are not specialized for leaping. To clarify varieties of quadrupedal movement, a quantitative field study of the positional behavior of a highly arboreal cercopithecine, Macaca fascicularis, was conducted in northern Sumatra. At least 70% of locomotion in travel, foraging, and feeding was movement along continuous substrates by quadrupedalism and vertical climbing. Another 14-25% of locomotion was across substrates by pronograde clambering and vertical clambering. The highest frequency of clambering occurred in foraging for insects, and on the average smaller substrates were used in clambering than during quadrupedal movement. All postural behavior during foraging and feeding was above-substrate, largely sitting. Locomotion across substrates requires grasping branches of diverse orientations, sometimes displaced away from the animal's body. The relatively low frequency of across-substrate locomotion appears consistent with published analyses of cercopithecoid postcranial morphology, indicating specialization for stability of limb joints and use of limbs in parasagittal movements, but confirmation of this association awaits interspecific comparisons that make the distinction between along- and across-substrate forms of locomotion. It is suggested that pronograde clambering as defined in this study was likely a positional mode of considerable importance in the repertoire of Proconsul africanus and is a plausible early stage in the evolution of later hominoid morphology and locomotor behavior.  相似文献   

12.
Teilhardina belgica is one of the earliest fossil primates ever recovered and the oldest fossil primate from Europe. As such, this taxon has often been hypothesized as a basal tarsiiform on the basis of its primitive dental formula with four premolars and a simplified molar cusp pattern. Until recently [see Rose et al.: Am J Phys Anthropol 146 (2011) 281–305; Gebo et al.: J Hum Evol 63 (2012) 205–218], little was known concerning its postcranial anatomy with the exception of its well‐known tarsals. In this article, we describe additional postcranial elements for T. belgica and compare these with other tarsiiforms and with primitive adapiforms. The forelimb of T. belgica indicates an arboreal primate with prominent forearm musculature, good elbow rotational mobility, and a horizontal, rather than a vertical body posture. The lateral hand positions imply grasps adaptive for relatively large diameter supports given its small body size. The hand is long with very long fingers, especially the middle phalanges. The hindlimb indicates foot inversion capabilities, frequent leaping, arboreal quadrupedalism, climbing, and grasping. The long and well‐muscled hallux can be coupled with long lateral phalanges to reconstruct a foot with long grasping digits. Our phyletic analysis indicates that we can identify several postcranial characteristics shared in common for stem primates as well as note several derived postcranial characters for Tarsiiformes. Am J Phys Anthropol 156:388–406, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
In order to find correlations between skin gland morphology and specific ethological features, the cutaneous glands of the foot pads of the primitive mammal the Madagascan tenrec, Echinops telfairi, were studied by histological and various histochemical methods as well as by electron microscopy. In the foot pads specific eccrine skin glands occurred consisting of coiled ducts and tubular secretory portions, the lumina of which were considerably wider than in primate sweat glands. The secretory tubules were composed of branched myoepithelial cells and glandular cells. The latter contained abundant mitochondria, large amounts of glycogen particles and few secretory granules as well as individual heterolysosomes and myelin bodies. The lateral cell membrane was marked by extensive interdigitations. The apical membranes of all glandular cells contained proteoglycans with sulfated and carboxylated groups containing N-acetyl-glucosamine, N-acetyl-galactosamine, galactose and mannose. The expression pattern of cytokeratins of the glandular epithelium was variable and showed similarities to that of the human eccrine glands. Tubulin, vinculin and actin were expressed in the glandular epithelium. The secretory cells showed positive reactions with antibodies against antimicrobial peptides and IgA. A positive reaction was observed with antibodies against the androgen receptor. The PCNA and TUNEL reactions indicated that the tubular skin glands of Echinops are made up of a slowly renewing tissue. We conclude that the glands fulfill several functions: production of a fluid-rich secretory product, which may prevent slipping of the foot pads on the substrate during running or climbing, secretion of antimicrobial peptides and proteins, and playing a role in thermoregulation.We thank the Fendt Foundation for financial support  相似文献   

14.
Teilhardina belgica is one of the most primitive fossil primates known to date and the earliest haplorhine with associated postcranials, making it relevant to a reconstruction of the ancestral primate morphotype. Here we describe newly discovered postcranial elements of T. belgica. It is a small primate with an estimated body mass between 30 and 60 g, similar to the size of a mouse lemur. Its hindlimb anatomy suggests frequent and forceful leaping with excellent foot mobility and grasping capabilities. It can now be established that this taxon exhibits critical primate postcranial synapomorphies such as a grasping hallux, a tall knee, and nailed digits. This anatomical pattern and behavioral profile is similar to what has been inferred before for other omomyids and adapiforms. The most unusual feature of T. belgica is its elongated middle phalanges (most likely manual phalanges), suggesting that this early primate had very long fingers similar to those of living tarsiers.  相似文献   

15.
The central hypothesis of this paper is that basic properties of vertebrate limb development bias the generation of phenotypic variation in certain directions, and that these biases establish focal units, or regions, of evolutionary change within the primate hand and foot. These focal units include (1) a preaxial domain (digit I, hallux or pollex, metapodial and proximal phalanx), (2) a postaxial domain (metapodials and phalanges of digits II?CV), and (3) a digit tip domain (terminal phalanges and nails/claws of rays I?CV). The existence of these focal units therefore provides a mechanistic basis for mosaic evolution within the hand and foot, and can be applied to make specific predictions about which features of the limb skeleton are most likely to be altered in primate adaptive radiations over time. Examination of the early primate fossil record provides support for this model, and suggests that the existence of variational tendencies in limb development has played a major role in guiding the origin and evolution of primate skeletal form.  相似文献   

16.
The grasping primate foot is one of the hallmark adaptations for the order Primates. Prosimian muscle and joint analysis indicates that there are two distinct primate grasping feet. The I–V opposable grasp, in which the hallux opposes the other four digits around a support, is the primitive grasp type utilized by cheirogaleids, lorisides, Daubentonia, and tarsiids. Lemurids and indriids, on the other hand, have a derived I–II adductor grasp, where the grasping action of the hallux and the second digit have been enhanced. This grasp seems to be in response to increasing body size and the use of vertical supports. North American adapids, which were large and possessed the I–V opposable grasp, were probably not able to utilize vertical supports frequently. The recognition of this innovative adaptation, the I–II adductor grasp, which is unique to Madagascar, extends our appreciation of prosimian locomotor capabilities.  相似文献   

17.
Recent excavations in northwestern Kenya have recovered a vertebrate fauna of late early or early late Oligocene age. Among the mammal remains, a fragmentary lower jaw and an isolated upper molar have been attributed to a small primate, Lokonepithecus manai gen. et sp. nov. Lokonepithecus is a primitive member of the Parapithecidae and possibly most closely related to Apidium from the Fayum. The new primate from Kenya is the youngest parapithecid known and its occurrence in the Oligocene of Kenya suggests that sub-Saharan Africa probably played a major role in the evolutionary history of several groups of mammals.  相似文献   

18.
Hypotheses for the adaptive origin of primates have reconstructed nocturnality as the primitive activity pattern for the entire order based on functional/adaptive interpretations of the relative size and orientation of the orbits, body size and dietary reconstruction. Based on comparative data from extant taxa this reconstruction implies that basal primates were also solitary, faunivorous, and arboreal. Recently, primates have been hypothesized to be primitively diurnal, based in part on the distribution of color-sensitive photoreceptor opsin genes and active trichromatic color vision in several extant strepsirrhines, as well as anthropoid primates (Tan & Li, 1999 Nature402, 36; Li, 2000 Am. J. phys. Anthrop. Supple.30, 318). If diurnality is primitive for all primates then the functional and adaptive significance of aspects of strepsirrhine retinal morphology and other adaptations of the primate visual system such as high acuity stereopsis, have been misinterpreted for decades. This hypothesis also implies that nocturnality evolved numerous times in primates. However, the hypothesis that primates are primitively diurnal has not been analyzed in a phylogenetic context, nor have the activity patterns of several fossil primates been considered.This study investigated the evolution of activity patterns and trichromacy in primates using a new method for reconstructing activity patterns in fragmentary fossils and by reconstructing visual system character evolution at key ancestral nodes of primate higher taxa. Results support previous studies that reconstruct omomyiform primates as nocturnal. The larger body sizes of adapiform primates confound inferences regarding activity pattern evolution in this group. The hypothesis of diurnality and trichromacy as primitive for primates is not supported by the phylogenetic data. On the contrary, nocturnality and dichromatic vision are not only primitive for all primates, but also for extant strepsirrhines. Diurnality, and possibly X-linked polymorphic trichromacy, evolved at least in the stem lineage of Anthropoidea, or the stem lineage of all haplorhines.  相似文献   

19.
A microvertebrate locality was discovered in the Southern part of the Ourzazate Basin (Morocco). The classical stratigraphic data as well as new elements given by Selacians allow us to date it form Lower Paleocene. Characid fishes, the oldest known to day, and an eutherian mammal fauna are associated with these Selacians. The mammal fauna includes Palaeoryctids, showing close affinities with the North American Upper Cretaceous genus Batodon, three forms which can be attributed to small carnivores, and still undetermined teeth. This fauna brings concrete elements to the problem of the african primitive mammal peopling and to the paleobiogeographical relationships of this continent.  相似文献   

20.
The endocranial cast of Tetonius homunculus, a 55 million year old tarsioid primate, is primitive in having relatively large olfactory bulbs and small frontal lobes, but remarkably advanced for an Early Eocene mammal in its voluminous occipital and temporal lobes. Expansion of occipital and temporal cortical regions of the brain suggests improvement in visual and auditory function, which may have been an important factor in the Early Eocene radiation of the primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号