首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Anaerobe》2000,6(1):39-57
The taxonomy of spirochetes has improved considerably over the last few years. Even non-cultivable spirochetes have been classified and identified and highly discriminating analytical methods have been used to distinguish these unique organisms. The present article reviews major characteristics and techniques that have been applied in recent molecular taxonomy and chemotaxonomy of spirochetes. These comprise cellular lipids, carbohydrates, peptidoglycan, enzymes, cell proteins, cytoplasmic fibrils, metabolites, genome size, structure and base composition, restriction endonuclease analysis, restriction fragment length polymorphism, multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, DNA-DNA hybridization, arbitrarily primed polymerase chain reaction/randomly amplified polymorphic DNA fingerprinting, ribosomal (r) RNA cataloguing and sequencing, characterization of intergenic spacer regions of rRNA genes, ospA, lipoprotein and flagellin gene sequencing, and rRNA gene organization. Characteristics and techniques such as those listed above have contributed to the recognition of new spirochetal genera and species and have made spirochetal taxonomy polyphasic. Despite these improvements, significant reservoirs of hitherto unrecognized spirochetal diversity probably still exist.  相似文献   

2.
Filamentous fungi and yeast from the genera Saccharomyces, Penicillium, Aspergillus, and Fusarium are well known for their impact on our life as pathogens, involved in food spoilage by degradation or toxin contamination, and also for their wide use in biotechnology for the production of beverages, chemicals, pharmaceuticals, and enzymes. The genomes of these eukaryotic micro-organisms range from about 6000 genes in yeasts (S. cerevisiae) to more than 10,000 genes in filamentous fungi (Aspergillus sp.). Yeast and filamentous fungi are expected to share much of their primary metabolism; therefore much understanding of the central metabolism and regulation in less-studied filamentous fungi can be learned from comparative metabolite profiling and metabolomics of yeast and filamentous fungi. Filamentous fungi also have a very active and diverse secondary metabolism in which many of the additional genes present in fungi, compared with yeast, are likely to be involved. Although the 'blueprint' of a given organism is represented by the genome, its behaviour is expressed as its phenotype, i.e. growth characteristics, cell differentiation, response to the environment, the production of secondary metabolites and enzymes. Therefore the profile of (secondary) metabolites--fungal chemodiversity--is important for functional genomics and in the search for new compounds that may serve as biotechnology products. Fungal chemodiversity is, however, equally efficient for identification and classification of fungi, and hence a powerful tool in fungal taxonomy. In this paper, the use of metabolite profiling is discussed for the identification and classification of yeasts and filamentous fungi, functional analysis or discovery by integration of high performance analytical methodology, efficient data handling techniques and core concepts of species, and intelligent screening. One very efficient approach is direct infusion Mass Spectrometry (diMS) integrated with automated data handling, but a full metabolic picture requires the combination of several different analytical techniques.  相似文献   

3.
《Gene》1997,190(1):87-97
From the onset of gene technology yeasts have been among the most commonly used host cells for the production of heterologous proteins. At the beginning of this new development the attention in molecular biology and biotechnology focused on the use of the best characterized species, Saccharomyces cerevisiae, leading to an increasing number of production systems for recombinant compounds. In recent years alternative yeasts became accessible for the techniques of modern molecular genetics and, thereby, for potential applications in biotechnology. In this respect Kluyveromyces lactis, and the methylotrophs Hansenula polymorpha and Pichia pastoris have been proven to offer significant advantages over the traditional baker's yeast for the production of certain proteins. In the following article, the present status of the various yeast systems is discussed.  相似文献   

4.
Biotechnological applications of acetic acid bacteria   总被引:2,自引:0,他引:2  
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.  相似文献   

5.
Recent developments in genomics have opened up for newer opportunities to study the diversity and classification of fungi. The genus Fusarium contains many plant pathogens that attack diverse agricultural crops. Fusarium spp. are not only pathogenic to plants but are also known as toxin producers that negatively affect animal and human health. The identification of Fusarium species still remains one of the most critical issues in fungal taxonomy, given that the number of species recognized in the genus has been constantly changing in the last century due to the different taxonomic systems. This review focuses of various molecular-based techniques employed to study the diversity of Fusarium species causing diseases in major food crops. An introduction of fusarial diseases and their mycotoxins and molecular-marker-based methods for detection introduce the concept of marker application. Various well-known molecular techniques such as random amplified polymorphic DNA, amplification fragment length polymorphism, etc. to more modern ones such as DNA microarrays, DNA barcoding, and pyrosequencing and their application form the core of the review. Target regions in the genome which can be potential candidates for generation of probes and their use in phylogeny of Fusarium spp. are also presented. The concluding part emphasizes the value of molecular markers for assessing genetic variability and reveals that molecular tools are indispensable for providing information not only of one Fusarium species but on whole fungal community. This will be of extreme value for diagnosticians and researchers concerned with fungal biology, ecology, and genetics.  相似文献   

6.
7.
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.  相似文献   

8.
Yeasts in foods and beverages: impact on product quality and safety   总被引:2,自引:0,他引:2  
The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.  相似文献   

9.
Tseng  C.K. 《Hydrobiologia》2004,512(1-3):11-20
Algae have been part of Chinese life for thousands of years. They are widely used as food and have been cited in Chinese literature as early as 2500 years ago. However, formal taxonomic studies on Chinese algae were initiated by foreign scientists only about 200 years ago, and by Chinese phycologists only about 90 years ago. This paper summarizes the history of modern phycological studies on Chinese algae and provides an overview of the achievements of phycological studies by Chinese scientists, especially on algal taxonomy, morphology, genetics, ecology and environmental research, physiology, biotechnology, algal culture, applied phycology and space phycology, in the last century. Recent development in phycological research focuses on algal floristic and molecular systematics, algal molecular biotechnology, applied phycology including micro and macroalgal cultivation and algal product development, and the roles of algae in environmental pollution control. These areas will also be the main focuses of Chinese phycological research in the foreseeable future.  相似文献   

10.
扩增片段长度多态性(AFLP)是一种有效的分子遗传标记方法,具有经济、简便、模板需要量少、重复性高、结果可靠等优点。目前AFLP在动物方面的应用还不是很多,处于初级阶段,主要用于鉴定分类关系、种群遗传多样性分析、遗传连锁图谱构建等方面。  相似文献   

11.
《Genomics》2022,114(2):110295
Nematodes are the most diverse but most minor studied microorganisms found in soil, water, animals, or plants. Either beneficial or pathogenic, they significantly affect human and animal health, plant production and ultimately affect the environmental equilibrium. Knowledge of their taxonomy and biology are the main issues to answer the different challenges associated with these microorganisms. The classical morphology-based nematode taxonomy and biodiversity studies have proved insufficient to identify closely related taxa and have challenged most biologists. Several molecular approaches have been used to supplement morphological methods and solve these problems with markable success. The molecular techniques range from enzyme analysis, protein-based information to DNA sequence analysis. For several decades, efforts have been made to integrate molecular approaches with digital 3D image-capturing technology to improve the identification accuracy of such a taxonomically challenging group and communicate morphological data. This review presents various molecular techniques and provides examples of recent advances in these methods to identify free-living and plant-parasitic nematodes.  相似文献   

12.
家蚕肠道细菌群体调查与分析   总被引:16,自引:0,他引:16  
目前,环境微生物中绝大部分是无法获得纯培养的。为了比较全面地了解家蚕肠道的细菌群体结构,研究采用了非培养法和传统培养法相结合的方法进行调查分析。非培养法是先直接提取家蚕肠道中的微生物群体基因组DNA,用PCR法扩增细菌16S rRNA基因,建立16S rDNA文库;再以限制性片段长度多态性(RFLP)方法从文库中筛选可能不同细菌来源的克隆,并测定其核苷酸序列。将所获得的序列与GenBank数据库进行BLAST比对分析,并通过系统发育分析,推测它们可能代表的细菌种属,以及对家蚕生长发育所起的作用。结果表明,家蚕肠道中的细菌主要是节杆菌属、乳杆菌属、大肠杆菌属、芽胞杆菌属、葡萄球菌属、假单胞菌属。它们在家蚕消化利用桑叶和疾病预防中可能有着重要意义。非培养法和培养法均有各自的长处和不足,两者具有较强的互补性。  相似文献   

13.
Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, “Biotechnology of non-Saccharomyces yeasts—the ascomycetes” (Johnson Appl Microb Biotechnol 97: 503–517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary and secondary metabolites. This and the earlier mini-review (Johnson Appl Microb Biotechnol 97:503–517, 2013) were motivated during the preparation and publication of the landmark three-volume set of “The yeasts: a taxonomic study, 5th edition” (Kurtzman et al. 2011a, b).  相似文献   

14.
DNA fingerprinting techniques for microorganisms   总被引:13,自引:0,他引:13  
A whole array of DNA-fingerprinting techniques, which provide indirect access to DNA sequence polymorphism in order to assess species or clonal identity of bacterial organisms or in order to study bacterial genome composition, have been described during past decades. Nomenclature has been sometimes erroneous and/or confusing, also because of hybrid techniques that combine different approaches. It can be shown that most techniques study the sequence polymorphism of only the chromosome, or only the plasmid(s) or only a gene or gene fragment and that the sequence polymorphism is revealed by AFLP (amplified fragment length polymorphism) or by RFLP (restriction fragment length polymorphism) or by special electrophoresis techniques. Starting from these considerations, some taxonomy of techniques, which enables more appropriate nomenclature, can be developed.  相似文献   

15.
Identification of clinically relevant yeasts by PCR/RFLP   总被引:5,自引:0,他引:5  
For molecular diagnosis of fungal disease using DNA amplification procedures in the routine laboratory, choice of appropriate target structures and rapid and inexpensive identification of amplification products are important prerequisites. Most diagnostic procedures described thus far are characterized by limited applicability, considerable cost for laboratory equipment or low power of discrimination between species. This study aimed at identification of a PCR target appropriate for diagnosis of clinically relevant yeasts and an affordable procedure for characterization of the PCR products to the species level. Here, we describe a PCR-based system using amplification of intergenic spacers ITS1 and ITS2 and restriction length polymorphism of PCR products after sequence-specific enzymatic cleavage. We show the evaluation of the system for clinically relevant Candida species. The simple and inexpensive procedure should be instrumental for rapid identification of medically important yeasts.  相似文献   

16.
DNA-based methods have greatly enhanced the sensitivity and specificity of hematophagous arthropod bloodmeal identification. A variety of methods have been applied to study the blood-feeding behaviour of mosquitoes, ticks, black flies and other blood-feeding arthropods as it relates to host-parasite interactions and pathogen transmission. Overviews of the molecular techniques used for bloodmeal identification, their advantages, disadvantages and applications are presented for DNA sequencing, group-specific polymerase chain reaction primers, restriction fragment length polymorphism, real-time polymerase chain reaction, heteroduplex analysis, reverse line-blot hybridization and DNA profiling. Technical challenges to bloodmeal identification including digestion and analysis of mixed bloodmeals are discussed. Analysis of bloodmeal identification results remains a challenge to the field, particularly with regard to incorporation of vertebrate census and ecology data. Future research directions for molecular analysis of arthropod bloodmeals are proposed.  相似文献   

17.
18.
大肠杆菌不同菌株基因组DNA的多态性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
从大肠杆菌K12菌株JM109基因组克隆了两段DNA重复序列,长度为0.9和0.6kb,分别命名为ECR-1和ECR-6。以ECR-1和ECR-6重复序列作DNA多态性分析的探针,可以鉴别大肠杆菌非常相近的菌株。表明ECR-1和ECR-6 DNA序列可用于大肠杆菌菌株的分类、流行病学和微生态学研究以及大肠杆菌各种致病菌株的临床诊断。  相似文献   

19.
Genomics, molecular genetics and the food industry   总被引:2,自引:0,他引:2  
The production of foods for an increasingly informed and selective consumer requires the coordinated activities of the various branches of the food chain in order to provide convenient, wholesome, tasty, safe and affordable foods. Also, the size and complexity of the food sector ensures that no single player can control a single process from seed production, through farming and processing to a final product marketed in a retail outlet. Furthermore, the scientific advances in genome research and their exploitation via biotechnology is leading to a technology driven revolution that will have advantages for the consumer and food industry alike. The segment of food processing aids, namely industrial enzymes which have been enhanced by the use of biotechnology, has proven invaluable in the production of enzymes with greater purity and flexibility while ensuring a sustainable and cheap supply. Such enzymes produced in safe GRAS microorganisms are available today and are being used in the production of foods. A second rapidly evolving segment that is already having an impact on our foods may be found in the new genetically modified crops. While the most notorious examples today were developed by the seed companies for the agro-industry directed at the farming sector for cost saving production of the main agronomical products like soya and maize, its benefits are also being seen in the reduced use of herbicides and pesticides which will have long term benefits for the environment. Technology-driven advances for the food processing industry and the consumer are being developed and may be divided into two separate sectors that will be presented in greater detail: 1. The application of genome research and biotechnology to the breeding and development of improved plants. This may be as an aid for the cataloging of industrially important plant varieties, the rapid identification of key quality traits for enhanced classical breeding programs, or the genetic modification of important plants for improved processing properties or health characteristics. 2. The development of advanced microorganisms for food fermentations with improved flavor production, health or technological characteristics. Both yeasts and bacteria have been developed that fulfill these requirements, but are as yet not used in the production of foods.  相似文献   

20.
土壤线虫多样性是土壤生态学研究的热点之一, 然而对土壤线虫群落组成及多样性的研究通常受到分类学和方法学的限制。当前, 分子生物学技术的快速发展丰富了我们对土壤线虫多样性的认识, 但也存在一定的局限性。本文综述了常用分子生物学技术如变性梯度凝胶电泳(denaturing gradient gel electrophoresis, DGGE)、末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)、实时荧光定量PCR (quantitative real-time PCR, qPCR)和高通量测序(high-throughput sequencing, HTS)技术近年来在线虫多样性研究中的应用, 重点从土壤线虫DNA提取方法、引物和数据库的选择、高通量测序技术和形态学鉴定结果的比较等方面阐述了高通量测序技术在线虫多样性研究中的优势与不足, 并提出选择合适的线虫DNA提取方法结合特定引物和数据库进行注释分析, 仍是今后使用高通量测序技术开展线虫多样性研究的重点。当研究目标是土壤线虫多样性时, 优先推荐富集线虫悬液提取DNA的方法, 因此, 研究人员应根据具体目标选择最优组合开展实验研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号