首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stochastic variability of key abiotic factors including temperature, precipitation and the availability of light and nutrients greatly influences species’ ecological function and evolutionary fate. Despite such influence, ecologists have typically ignored the effect of abiotic stochasticity on the structure and dynamics of ecological networks. Here we help to fill that gap by advancing the theory of how abiotic stochasticity, in the form of environmental noise, affects the population dynamics of species within food webs. We do this by analysing an allometric trophic network model of Lake Constance subjected to positive (red), negative (blue), and non‐autocorrelated (white) abiotic temporal variability (noise) introduced into the carrying capacity of basal species. We found that, irrespective of the colour of the introduced noise, the temporal variability of the species biomass within the network both reddens (i.e. its positive autocorrelation increases) and dampens (i.e. the magnitude of variation decreases) as the environmental noise is propagated through the food web by its feeding interactions from the bottom to the top. The reddening reflects a buffering of the noise‐induced population variability by complex food web dynamics such that non‐autocorrelated oscillations of noise‐free deterministic dynamics become positively autocorrelated. Our research helps explain frequently observed red variability of natural populations by suggesting that ecological processing of environmental noise through food webs with a range of species’ body sizes reddens population variability in nature.  相似文献   

2.
Sea‐level rise (SLR) is a projected consequence of global climate change that will result in complex changes in coastal ecosystems. These changes will cause transitions among coastal habitat types, which will be compounded by human‐made barriers to the gradual inland migration of these habitat types. The effect of these changes on the future viability of coastal species will depend on the habitat requirements and population dynamics of these species. Thus, realistic assessments of the impact of SLR require linking geomorphological models with habitat and population models. In this study, we implemented a framework that allows this linkage, and demonstrated its feasibility to assess the effect of SLR on the viability of the Snowy Plover population in Florida. The results indicate that SLR will cause a decline in suitable habitat and carrying capacity for this species, and an increase in the risk of its extinction and decline. The model projected that the population size will decline faster than the area of habitat or carrying capacity, demonstrating the necessity of incorporating population dynamics in assessing the impacts of SLR on coastal species. The results were most sensitive to uncertainties in survival rate and fecundity, and suggested that future studies on this species should focus on the average and variability of these demographic rates and their dependence on population density. The effect of SLR on this species’ viability was qualitatively similar with most alternative models that used the extreme values of each uncertain parameter, indicating that the results are robust to uncertainties in the model.  相似文献   

3.
Environmental variability is a ubiquitous feature of every organism's habitat. However, the interaction between density dependence and those density-independent factors that are manifested as environmental noise is poorly understood. We are interested in the conditions under which noise interacts with the density dependence to cause amplification of that noise when filtered by the system. For a broad family of structured population models, we show that amplification occurs near the threshold from stable to unstable dynamics by deriving an analytic formula for the amplification under weak noise. We confirm that the effect of noise is to sustain oscillations that would otherwise decay, and we show that it is the amplitude and not the phase that is affected. This is a feature noted in several recent studies. We study this phenomenon in detail for the lurchin and LPA models of population dynamics. We find that the degree of amplification is sensitive to both the noise input and life-history stage through which it acts, that the results hold for surprisingly high levels of noise, and that stochastic chaos (as measured by local Lyapunov exponents) is a concomitant feature of amplification. Further, it is shown that the temporal autocorrelation, or "color," of the noise has a major impact on the system response. We discuss the conditions under which color increases population variance and hence the risk of extinction, and we show that periodicity is sharpened when the color of the noise and dynamics coincide. Otherwise, there is interference, which shows how difficult it is in practice to separate the effects of nonlinearity and noise in short time series. The sensitivity of the population dynamics to noise when close to a bifurcation has wide-ranging consequences for the evolution and ecology of population dynamics.  相似文献   

4.
The contribution of deterministic and stochastic processes to species coexistence is widely debated. With the introduction of powerful statistical techniques, we can now better characterise different sources of uncertainty when quantifying niche differentiation. The theoretical literature on the effect of stochasticity on coexistence, however, is often ignored by field ecologists because of its technical nature and difficulties in its application. In this review, we examine how different sources of variability in population dynamics contribute to coexistence. Unfortunately, few general rules emerge among the different models that have been studied to date. Nonetheless, we believe that a greater understanding is possible, based on the integration of coexistence and population extinction risk theories. There are two conditions for coexistence in the presence of environmental and demographic variability: (1) the average per capita growth rates of all coexisting species must be positive when at low densities, and (2) these growth rates must be strong enough to overcome negative random events potentially pushing densities to extinction. We propose that critical tests for species coexistence must account for niche differentiation arising from this variability and should be based explicitly on notions of stability and ecological drift.  相似文献   

5.
6.
Because of the inherent discreteness of individuals, population dynamical models must be discrete variable systems. In case of strong nonlinearity, such systems interacting with noise can generate a great variety of patterns from nearly periodic behavior through complex combination of nearly periodic and chaotic patterns to noisy chaotic time series. The interaction of a population consisting of discrete individuals and demographic noise has been analyzed in laboratory population data Henson et al. (Science 294 (2001) 602; Proc. Roy. Soc. Ser. B 270 (2003) 1549). In this paper we point out that some of the cycles are fragile, i.e. they are sensitive to the discretization algorithm and to small variation of the model parameters, while others remain "sturdy" against the perturbations. We introduce a statistical algorithm to detect disjoint, nearly-periodic patterns in data series. We show that only the sturdy cycles of the discrete variable models appear in the data series significantly. Our analysis identified the quasiperiodic 11-cycle (emerging in the continuous model) to be present significantly only in one of the three experimental data series. Numerical simulations confirm that cycles can be detected only if noise is smaller than a certain critical level and population dynamics display the largest variety of nearly-periodic patterns if they are on the border of "grey" and "noisy" regions, defined in Domokos and Scheuring (J. Theor. Biol. 227 (2004) 535).  相似文献   

7.
Characterizing population fluctuations and their causes is a major theme in population ecology. The debate is on the relative merits of density-dependent and density-independent effects. One paradigm (revived by the research on global warming and its relation to long-term population data) states that fluctuations in population densities can often be accounted for by external noise. Several empirical models have been suggested to support this view. We followed this by assuming a given population skeleton dynamics (Ricker dynamics and second-order autoregressive dynamics) topped off with noise composed of low- and high-frequency components. Our aim was to determine to what extent the modulated population dynamics correlate with the noise signal. High correlations (with time-lag -1) were observed with both model categories in the region of stable dynamics, but not in the region of periodic or complex dynamics. This finding is not very sensitive to low-frequency noise. High correlations throughout the entire range of dynamics are only achievable when the impact of the noise is very high. Fitted parameter values of skeleton dynamics modulated with noise are prone to err substantially. This casts doubt as to what degree the underlying dynamics are any more recognizable after being modulated by the external noise.  相似文献   

8.
Correlative species distribution models have long been the predominant approach to predict species’ range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well‐known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short‐term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long‐term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so‐called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short‐term climate variability modifies model results nearly as differences in projected long‐term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range‐dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long‐lived species are primarily responsive to long‐term climate averages.  相似文献   

9.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

10.
Many insect species undergo multiple generations each year. They are found across biomes that vary in their strength of seasonality and, depending on location and species, can display a wide range of population dynamics. Some species exhibit cycles with distinct generations (developmental synchrony/generation separation), some exhibit overlapping generations with multiple life stages present simultaneously (generation smearing), while others have intermediate dynamics with early season separation followed by late season smearing. There are two main hypotheses to explain these dynamics. The first is the ‘seasonal disturbance’ hypothesis where winter synchronizes the developmental clock among individuals, which causes transient generation separation early in the season that erodes through the summer. The second is the ‘temperature destabilization’ hypothesis where warm temperatures during the summer cause population dynamics to become unstable giving rise to single generation cycles. Both hypotheses are supported by detailed mathematical theory incorporating mechanisms that are likely to drive dynamics in nature. In this review, we synthesize the theory and propose a conceptual framework—where each mechanism may be seen as an independent axis shaping the developmental (a)synchrony—that allows us to predict dynamic patterns from insect life-history characteristics. High fecundity, short adult life-span and strong seasonality enhance synchrony, while developmental plasticity and environmental heterogeneity erode synchrony. We further review current mathematical and statistical tools to study multi-generational dynamics and illustrate using case studies of multivoltine tortrix moths. By integrating two disparate bodies of theory, we articulate a deep connection among temperature, stability, developmental synchrony and inter-generational dynamics of multivoltine insects that is missing in current literature.  相似文献   

11.
The interplay between intrinsic population dynamics and environmental variation is still poorly understood. It is known, however, that even mild environmental noise may induce large fluctuations in population abundances. This is due to a resonance effect that occurs in communities on the edge of stability. Here, we use a simple predator-prey model to explore the sensitivity of plankton communities to stochastic environmental fluctuations. Our results show that the magnitude of resonance depends on the timescale of intrinsic population dynamics relative to the characteristic timescale of the environmental fluctuations. Predator-prey communities with an intrinsic tendency to oscillate at a period T are particularly responsive to red noise characterized by a timescale of τ = T/2π. We compare these theoretical predictions with the timescales of temperature fluctuations measured in lakes and oceans. This reveals that plankton communities will be highly sensitive to natural temperature fluctuations. More specifically, we demonstrate that the relatively fast temperature fluctuations in shallow lakes fall largely within the range to which rotifers and cladocerans are most sensitive, while marine copepods and krill will tend to resonate more strongly with the slower temperature variability of the open ocean.  相似文献   

12.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

13.
Alternative explanations for disease and other population cycles typically include extrinsic environmental drivers, such as climate variability, and intrinsic nonlinear dynamics resulting from feedbacks within the system, such as species interactions and density dependence. Because these different factors can interact in nonlinear systems and can give rise to oscillations whose frequencies differ from those of extrinsic drivers, it is difficult to identify their respective contributions from temporal population patterns. In the case of disease, immunity is an important intrinsic factor. However, for many diseases, such as cholera, for which immunity is temporary, the duration and decay pattern of immunity is not well known. We present a nonlinear time series model with two related objectives: the reconstruction of immunity patterns from data on cases and population sizes and the identification of the respective roles of extrinsic and intrinsic factors in the dynamics. Extrinsic factors here include both seasonality and long-term changes or interannual variability in forcing. Results with simulated data show that this semiparametric method successfully recovers the decay of immunity and identifies the origin of interannual variability. An application to historical cholera data indicates that temporary immunity can be long-lasting and decays in approximately 9 yr. Extrinsic forcing of transmissibility is identified to have a strong seasonal component along with a long-term decrease. Furthermore, noise appears to sustain the multiple frequencies in the long-term dynamics. Similar semiparametric models should apply to population data other than for disease.  相似文献   

14.
Although theoretical models have demonstrated that predator–prey population dynamics can depend critically on age (stage) structure and the duration and variability in development times of different life stages, experimental support for this theory is non‐existent. We conducted an experiment with a host–parasitoid system to test the prediction that increased variability in the development time of the vulnerable host stage can promote interaction stability. Host–parasitoid microcosms were subjected to two treatments: Normal and High variance in the duration of the vulnerable host stage. In control and Normal‐variance microcosms, hosts and parasitoids exhibited distinct population cycles. In contrast, insect abundances were 18–24% less variable in High‐ than Normal‐variance microcosms. More significantly, periodicity in host–parasitoid population dynamics disappeared in the High‐variance microcosms. Simulation models confirmed that stability in High‐variance microcosms was sufficient to prevent extinction. We conclude that developmental variability is critical to predator–prey population dynamics and could be exploited in pest‐management programs.  相似文献   

15.
Population dynamics and evolutionary dynamics can occur on similar time scales, and a coupling of these two processes can lead to novel population dynamics. Recent theoretical studies of coevolving predator-prey systems have concentrated more on the stability of such systems than on the characteristics of cycles when they are unstable. Here I explore the characteristics of the cycles that arise due to coevolution in a system in which prey can increase their ability to escape from predators by becoming either significantly larger or significantly smaller in trait value (i.e., a bidirectional trait axis). This is a reasonable model of body size evolution in some systems. The results show that antiphase population cycles and cryptic cycles (large population fluctuation in one species but almost no change in another species) can occur in the coevolutionary system but not systems where only a single species evolves. Previously, those dynamical patterns have only been theoretically shown to occur in single species evolutionary models and the coevolutionary model which do not involve a bi-directional axis of adaptation. These unusual dynamics may be observed in predator-prey interactions when the density dependence in the prey species is strong.  相似文献   

16.
Jouni Laakso  Veijo Kaitala  Esa Ranta 《Oikos》2004,104(1):142-148
Non-linearities are commonly observed in the responses of organisms to environment. They potentially modify the qualitative and quantitative properties of population dynamics. We studied how non-linear responses to environment, or "noise filters", influence population variability and extinction risk by introducing coloured noise to the growth rate in the Hassell single-species model. The consequences of noise filtering were analysed by comparing the model dynamics with linearly filtered and non-linearly filtered noise that have the same mean. Three biologically plausible filters we used: saturating, unimodal optimum type, and sigmoid responses.
Filtering can either decrease or increase population variability when compared to linear noise response. The effect of noise filtering on variability is most pronounced with stable population dynamics and the outcome depends on the filter type, population growth rate, and noise colour.
Non-linear noise filtering predominantly increases extinction risks when population growth rate is low (R<5). As an exception, saturating filter has a window of decreased risk at very low growth rate and reddened environment. In the unstable range of the dynamics (15These results suggest that accounting for the non-linear responses to environment should be considered when estimating extinction risks and population variability. Moreover, the non-linear responses make noise colour a more important factor in these analyses.  相似文献   

17.
The interaction between environmental variation and population dynamics is of major importance, particularly for managed and economically important species, and especially given contemporary changes in climate variability. Recent analyses of exploited animal populations contested whether exploitation or environmental variation has the greatest influence on the stability of population dynamics, with consequences for variation in yield and extinction risk. Theoretical studies however have shown that harvesting can increase or decrease population variability depending on environmental variation, and requested controlled empirical studies to test predictions. Here, we use an invertebrate model species in experimental microcosms to explore the interaction between selective harvesting and environmental variation in food availability in affecting the variability of stage‐structured animal populations over 20 generations. In a constant food environment, harvesting adults had negligible impact on population variability or population size, but in the variable food environments, harvesting adults increased population variability and reduced its size. The impact of harvesting on population variability differed between proportional and threshold harvesting, between randomly and periodically varying environments, and at different points of the time series. Our study suggests that predicting the responses to selective harvesting is sensitive to the demographic structures and processes that emerge in environments with different patterns of environmental variation.  相似文献   

18.
Assessing risks of local extinction and shifts in species ranges are fundamental tasks in ecology and conservation. Most studies have focused either on the border of species’ range or on complex spatiotemporal dynamics of populations within the spatial distribution of species. The internal properties of species ranges, however, have received less attention due to a general lack of simple tools. We propose a novel approach within a metapopulation framework to study species ranges based on simple mathematical rules. We formulate and test a model of population fluctuations through space to identify key factors that regulate population density. We propose that spatial variability in species abundance reflects the interaction between temporal variability in population dynamics and the spatial variability of population parameters. This approach, that we call range structure analysis, integrates temporal and spatial properties to diagnose how each parameter contributes to species occupancy throughout its geographic range.  相似文献   

19.
Two or more competing predators can coexist using a single homogeneous prey species if the system containing all three undergoes internally generated fluctuations in density. However, the dynamics of species that coexist via this mechanism have not been extensively explored. Here, we examine both the nature of the dynamics and the responses of the mean densities of each predator to mortality imposed upon it or its competitor. The analysis of dynamics uncovers several previously undescribed behaviors for this model, including chaotic fluctuations, and long-term transients that differ significantly from the ultimate patterns of fluctuations. The limiting dynamics of the system can be loosely classified as synchronous cycles, asynchronous cycles, and chaotic dynamics. Synchronous cycles are simple limit cycles with highly positively correlated densities of the two predator species. Asynchronous cycles are limit cycles, frequently of complex form, including a significant period during which prey density is nearly constant while one predator gradually, monotonically replaces the other. Chaotic dynamics are aperiodic and generally have intermediate correlations between predator densities. Continuous changes in density-independent mortality rates often lead to abrupt transitions in mean population sizes, and increases in the mortality rate of one predator may decrease the population size of the competing predator. Similarly, increases in the immigration rate of one predator may decrease its own density and increase the density of the other predator. Proportional changes in one predator's birth and death rate functions can have significant effects on the dynamics and mean densities of both predator species. All of these responses to environmental change differ from those observed when competitors coexist stably as the result of resource (prey) partitioning. The patterns described here occur in many other competition models in which there are cycles and differences in the linearity of the responses of consumers to their resources.  相似文献   

20.
Although long-period population size cycles and chaotic fluctuations in abundance are common in ecological models, such dynamics are uncommon in simple population-genetic models where convergence to a fixed equilibrium is most typical. When genotype-frequency cycling does occur, it is most often due to frequency-dependent selection that results from individual or species interactions. In this paper, we demonstrate that fertility selection and genomic imprinting are sufficient to generate a Hopf bifurcation and complex genotype-frequency cycling in a single-locus population-genetic model. Previous studies have shown that on its own, fertility selection can yield stable two-cycles but not long-period cycling characteristic of a Hopf bifurcation. Genomic imprinting, a molecular mechanism by which the expression of an allele depends on the sex of the donating parent, allows fitness matrices to be nonsymmetric, and this additional flexibility is crucial to the complex dynamics we observe in this fertility selection model. Additionally, we find under certain conditions that stable oscillations and a stable equilibrium point can coexist. These dynamics are characteristic of a Chenciner (generalized Hopf) bifurcation. We believe this model to be the simplest population-genetic model with such dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号