首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intestinal smooth muscle plays a major role in the repair of injured intestine and contributes to the prostanoid pool during intestinal inflammatory states. Cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostanoids exists in two isoforms, COX-1 and COX-2. The purpose of this study was to determine the relative contributions of COX-1 and COX-2 in the production of prostanoids by human intestinal smooth muscle (HISM) cells when stimulated by interleukin-1beta (IL-1beta) and lipopolysaccharide (LPS). Furthermore the effects of specific COX-1 and COX-2 inhibitors on the proliferation of smooth muscle cells was also evaluated. Confluent monolayer cultures of HISM cells were incubated with IL-1beta or LPS for 0-24h while control cells received medium alone. PGE2 and PGI2 as 6-keto-PGF1alpha and LTB4 were measured by a specific radioimmunoassay. COX enzymes were evaluated by Western immunoblotting. Unstimulated and stimulated cells were exposed to the specific COX-1 inhibitor valerylsalicylic acid (VSA) and the COX-2 inhibitors NS-398 and SC-58125. The effects of serum on proliferation were then evaluated in the presence of each of the specific COX inhibitors by incorporation of 3H-thymidine into DNA. IL-1beta and LPS increased both PGE2 and 6-keto-PGF1alpha in a dose dependent fashion with enhanced production detected two hours following exposure. Neither stimulus stimulated LTB4 release. Immunoblot analysis using isoform-specific antibodies showed that both COX-1 and COX-2 were present constitutively. Furthermore, COX-1 was upregulated by each inflammatory stimulus. In a separate set of experiments cells were pretreated with either the selective COX-1 inhibitor VSA or the selective COX-2 inhibitors NS-398 or SC-58125 prior to treatment with IL-1beta or LPS. The COX-1 and COX-2 inhibitors decreased both basal and IL-1beta and LPS stimulated prostanoid release. Spontaneous DNA synthesis was present and serum consistently increased proliferation. 3H-thymidine incorporation, stimulated by serum, was inhibited by both COX-1 and COX-2 inhibitors. This study suggests that the prostanoid response stimulated by proinflammatory agents of gut-derived smooth muscle cells appears to be mediated by both COX-1 and COX-2 enzymes. Proliferation of smooth muscles cells also appears to be influenced by both COX-1 and COX-2.  相似文献   

2.
The contribution of cycloxygenase (COX)-1 and COX-2 in antigen-induced release of mediators and ensuing bronchoconstriction was investigated in the isolated perfused guinea pig lung (IPL). Antigen challenge with ovalbumin (OVA) of lungs from actively sensitised animals induced release of thromboxane (TX)A(2), prostaglandin (PG)D(2), PGF(2)(alpha), PGI(2) and PGE(2), measured in the lung effluent as immunoreactive TXB(2), PGD(2)-MOX, PGF(2)(alpha), 6-keto PGF(1)(alpha) and PGE(2), respectively. This release was abolished by the non-selective COX inhibitor flurbiprofen (10 microM). In contrast, neither the selective COX-1 inhibitor FR122047 nor the selective COX-2 inhibitor celecoxib (10 microM each) significantly inhibited the OVA-induced bronchoconstriction or release of COX products, except for PGD(2). Another non-selective COX inhibitor, diclofenac (10 microM) also significantly inhibited antigen-induced bronchoconstriction. The data suggest that both COX isoenzymes, COX-1 and COX-2 contribute to the immediate antigen-induced generation of prostanoids in IPL and that the COX-1 and COX-2 activities are not associated with different profiles of prostanoid end products.  相似文献   

3.
We have developed a method for the simultaneous estimation of the levels of the prostanoids 6-keto prostaglandin (PG) Flalpha, PGB2, PGD2, PGE2, PGF2(alpha), PGJ2, and thromboxane (TX) B2 in blood- or serum-containing medium using liquid chromatography-tandem mass spectrometry. These prostanoids and their deuterium derivatives, which were used as internal standards, were subjected to solid-phase extraction using Empore C18 HD disk cartridges and analyzed in the selected reaction-monitoring mode. A linear response curve starting at 10 pg of prostanoid/tube was observed for each prostanoid. The accuracy of the method was demonstrated with samples containing known amounts of the prostanoids. Furthermore, we used this method to analyze the prostanoids produced in mouse bone marrow-derived mast cells stimulated with arachidonic acid, which resulted in the production of PGD2, PGE2, PGF2alpha, and TXB2. The results suggest that this simultaneous quantification method is useful for the analysis of the production of biomedically important prostanoids.  相似文献   

4.
The gallbladder (GB) maintains tonic contraction modulated by neurohormonal inputs but generated by myogenic mechanisms. The aim of these studies was to examine the role of prostaglandins in the genesis of GB myogenic tension. Muscle strips and cells were treated with prostaglandin agonists, antagonists, cyclooxygenase (COX) inhibitors, and small interference RNA (siRNA). The results show that PGE2, thromboxane A2 (TxA2), and PGF(2alpha) cause a dose-dependent contraction of muscle strips and cells. However, only TxA2 and PGE2 (E prostanoid 1 receptor type) antagonists induced a dose-dependent decrease in tonic tension. A COX-1 inhibitor decreased partially the tonic contraction and TxB2 (TxA2 stable metabolite) levels; a COX-2 inhibitor lowered the tonic contraction partially and reduced PGE2 levels. Both inhibitors and the nonselective COX inhibitor indomethacin abolished the tonic contraction. Transfection of human GB muscle strips with COX-1 siRNA partially lowered the tonic contraction and reduced COX-1 protein expression and TxB2 levels; COX-2 siRNA also partially reduced the tonic contraction, the protein expression of COX-2, and PGE2. Stretching muscle strips by 1, 2, 3, and 4 g increased the active tension, TxB2, and PGE2 levels; a COX-1 inhibitor prevented the increase in tension and TxB2; and a COX-2 inhibitor inhibited the expected rise in tonic contraction and PGE2. Indomethacin blocked the rise in tension and TxB2 and PGE2 levels. We conclude that PGE2 generated by COX-2 and TxA2 generated by COX-1 contributes to the maintenance of GB tonic contraction and that variations in tonic contraction are associated with concomitant changes in PGE2 and TxA2 levels.  相似文献   

5.
The purpose of these experiments was to characterize the contractile response of longitudinal muscle from the estrogen-dominated rat uterus to natural and synthetic prostanoids. The biological significance is 1) to provide evidence for or against a physiological role for each natural prostanoid in the regulation of myometrial activity, 2) to determine if each prostanoid has pharmacological potential for the manipulation of myometrial activity, and 3) to understand the structural requirements for prostanoid action on the myometrium. All analogs tested produced excitation of the myometrium in vitro through what appeared to be a direct action on the muscle. The order of potency of the natural prostanoids was prostaglandin (PG) F2 alpha = PGD2 = PGE2 = PGE1 greater than PGA2 = PGB2 = 6-keto-PGF1 alpha. This order of potency was not consistent with any single currently recognized prostanoid receptor. Furthermore, PGF2 alpha had an EC50 (effective concentration that produces 50% of the maximal response) of 0.5 microM, which was low in comparison to other PGF2 alpha-sensitive tissues. There were large differences in the maximum tension developed in response to the prostanoids tested, only PGF2 alpha, PGE2 and 6-keto PGF1 alpha were full agonists. Although the simplest explanation of these data was that the rat uterus contains a single novel type of prostanoid receptor, the existence of multiple receptor subtypes could not be disproved. Evidence from the effect of synthetic analogs suggested that neither thromboxane A2 nor PGI2 are physiological regulators of activity in this tissue.  相似文献   

6.
The production of prostaglandins by phagocytic cells of the thymic reticulum in culture (P-TR) was studied by using high pressure liquid chromatography and radioimmunoassay. Radioimmunologic determinations showed that thromboxane B2 (TXB2), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1 alpha (6 keto-PGF1 alpha) were the major compounds released into the culture medium, whereas prostaglandin F2 alpha (PGF2 alpha) was only a minor component. Indomethacin and dexamethasone exerted a similar pattern of differential inhibition of the secretion of prostanoids. PGE2 and 6-keto PGF1 alpha productions were markedly decreased by these anti-inflammatory drugs, whereas those of TXB2 and PGF2 alpha were not or were only slightly affected. Experiments performed with an antiglucocorticoid compound (RU 38486) showed that the steroid-induced inhibition of prostanoid secretion is a classical receptor-mediated action. These results demonstrated that phagocytic cells of the thymic reticulum, which resemble the thymic interdigitating cells, produce several types of prostaglandins. Because it has been described that P-TR regulate thymocyte proliferation in vitro via the secretion of both interleukin 1 and PGE2, these results suggest that anti-inflammatory agents may be able to modulate the thymic microenvironment and, consequently, thymocyte proliferation.  相似文献   

7.
Coupling between cyclooxygenases and terminal prostanoid synthases   总被引:7,自引:0,他引:7  
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2, cyclooxygenase (COX), and terminal prostanoid synthase. Recent evidence suggests that lineage-specific terminal prostanoid synthases, including prostaglandin (PG) E2, PGD2, PGF2alpha, PGI2, and thromboxane synthases, show distinct functional coupling with upstream COX isozymes, COX-1 and COX-2. This can account, at least in part, for segregated utilization of the two COX isozymes in distinct phases of PG-biosynthetic responses. In terms of their localization and COX preference, terminal prostanoid synthases are classified into three categories: (i) the perinuclear enzymes that prefer COX-2, (ii) the cytosolic enzyme that prefers COX-1, and (iii) the translocating enzyme that utilizes both COXs depending on the stimulus. Additionally, altered supply of arachidonic acid by phospholipase A2s significantly affects the efficiency of COX-terminal prostanoid synthase coupling. In this review, we summarize our recent understanding of the coupling profiles between the two COXs and various terminal prostanoid synthases.  相似文献   

8.
Antiabortifacient action of dibenzyloxyindanpropionic acid in mice   总被引:1,自引:0,他引:1  
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF1 alpha) were determined. PGE2 and 6 keto PGF1 alpha were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196 +/- 40 to 370 +/- 84 ng/4 hrs/g creatinine and 6 keto PGF1 alpha (184 +/- 30 to 326 +/- 36), both p less than 0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF1 alpha excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF1 alpha varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF1 alpha release (370 +/- 84 vs. 381 +/- 80) PGE2 and (326 +/- 50 vs. 315 +/- 40) 6 keto PGF1 alpha both p greater than 0.2). PHT alone stimulated only 6 keto PGF1 alpha. PHB and the specific alpha 1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with alpha 1 characteristics.  相似文献   

9.
Previous studies have shown that the natural prostanoids, PGE2, PGE1 and PGF2 alpha are potent stimulators of bone resorption. In this study, we have examined the effects of alterations in the cyclopentane ring of these prostanoids for their effect on the resorptive response of cultured long bones from 19-day fetal rats as measured by the release of previously incorporated 45Ca. Indomethacin (10(-6)M) was added to minimize endogenous prostaglandin production. In this system PGE2 and PGE1, the 9 keto, 11 alpha hydroxy compounds, were approximately equally effective at concentrations of 10(-8) to 10(-6) M. The 9 alpha hydroxy, 11 alpha hydroxy compound, PGF2 alpha, was active at 10(-7) to 10(-5) M. In contrast, the 9 alpha hydroxy, 11-keto compound, PGD2, showed only a minimal stimulation of bone resorption at 10(-5) M. While these data suggested that the 11 alpha hydroxy group was important for bone resorbing activity, 11 beta PGE2 and 11-deoxy PGE1 were only slightly less potent than their physiologic counterparts. Both 9 beta, 11 alpha PGF2 and 9 alpha, 11 beta PGF2 were less potent than PGF2 alpha but did cause substantial stimulation of bone resorption and were equally effective at 10(-6) to 10(-5) M. 9 alpha, 11 beta PGF2 alpha is of particular interest since it is major metabolite of PGD2. These results suggest that the binding of prostanoids to the receptor which mediates bone resorption is affected by changes at the 9 and 11 positions of the pentane ring but do not support the hypothesis that the 11 alpha OH function is essential for this biological activity.  相似文献   

10.
The influences of sex and acute inflammation on prostaglandin biosynthesis in rabbit gallbladder were examined by radiochromatography. Male rabbit gallbladder microsomes converted small amounts of labelled arachidonate to total prostaglandin synthesis with PGE2, 6-keto PGF1 alpha (stable metabolite of PGI2) and PGF2 alpha as the major products synthesized. Microsomes from the male rabbit gallbladder inflamed by bile duct ligation for 3 days increased total prostaglandin synthesis five-fold with 6-keto PGF1 alpha being the major prostaglandin produced. Female rabbit gallbladder microsomes converted three times more arachidonate to total prostaglandin synthesis than did microsomes from the male rabbit. Bile duct ligation did not alter total prostaglandin biosynthesis in the female rabbit gallbladder, but significantly decreased synthesis of PGE2, thromboxane B2 and PGF2 alpha and increased synthesis of 6-keto PGF1 alpha. These data suggest that although bile duct ligation had different effects on male and female gallbladder total prostaglandin synthesis, 6-keto PGF1 alpha is the major product induced by this stimulus for acute inflammation.  相似文献   

11.
Severe uterine and placental disturbances have been described in diabetes pathology. The relative severity of these changes appears to correlate with high glucose levels in the plasma and incubating environment. In order to characterize changes in eicosanoid production we compared uterine and placental arachidonic acid conversion from control and non-insulin-dependent diabetes mellitus (NIDDM) rats on day 21 of pregnancy, into different prostanoids, namely PGE2, PGF22alpha, TXB2 (indicating the production of TXA2) and 6-keto-PGF1 (indicating the generation of PGI2). PGE2, PGF2alpha and TXB2 production was higher and 6-keto-PGF1alpha was similar in diabetic compared to control uteri. PLA2 activity was found diminished in the NIDDM uteri in comparison to control. A role for PLA2 diminution as a protective mechanism to avoid prostaglandin overproduction in uterine tissue from NIDDM rats is discussed. Placental tissues showed an increment in TXB2 generation and a decrease in 6-keto PGF1alpha level in diabetic rats when compared to control animals. Moreover, when control uterine tissue was incubated in the presence of elevated glucose concentrations (22 mM), similar generation of 6-keto PGF1alpha and elevated production of PGE2, PGF2alpha and TXB2 were found when compared to those incubated with glucose 11 mM. Placental TXB2 production was higher and 6-keto PGF1alpha was lower when control tissues were incubated in the presence of high glucose concentrations. However, high glucose was unable to modify uterine or placental prostanoid production in diabetic rats. We conclude that elevated glucose levels induced an abnormal prostanoid profile in control uteri and placenta, similar to those observed in non-insulin-dependent diabetic tissues.  相似文献   

12.
Pathological conditions and pro-inflammatory stimuli in the brain induce cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism mediating the production of prostanoids that, among other actions, have strong vasoactive properties. Although low basal cerebral COX-2 expression has been reported, COX-2 is strongly induced by pro-inflammatory challenges, whereas COX-1 is constitutively expressed. However, the contribution of these enzymes in prostanoid formation varies depending on the stimuli and cell type. Astrocyte feet surround cerebral microvessels and release molecules that can trigger vascular responses. Here, we investigate the regulation of COX-2 induction and its role in prostanoid generation after a pro-inflammatory challenge with the bacterial lipopolysaccharide (LPS) in astroglia. Intracerebral administration of LPS in rodents induced strong COX-2 expression mainly in astroglia and microglia, whereas COX-1 expression was predominant in microglia and did not increase. In cultured astrocytes, LPS strongly induced COX-2 and microsomal prostaglandin-E(2) (PGE(2)) synthase-1, mediated by the MyD88-dependent NFκB pathway and influenced by mitogen-activated protein kinase pathways. Studies in COX-deficient cells and using COX inhibitors demonstrated that COX-2 mediated the high production of PGE(2) and, to a lesser extent, other prostanoids after LPS. In contrast, LPS down-regulated COX-1 in an MyD88-dependent fashion, and COX-1 deficiency increased PGE(2) production after LPS. The results show that astrocytes respond to LPS by a COX-2-dependent production of prostanoids, mainly vasoactive PGE(2), and suggest that the coordinated down-regulation of COX-1 facilitates PGE(2) production after TLR-4 activation. These effects might induce cerebral blood flow responses to brain inflammation.  相似文献   

13.
Several types of prostaglandin (PG)s are synthesized in adipocytes and involved differently in the control of adipogenesis. To elucidate how the PG synthesis is regulated at different stages in the life cycle of adipocytes, we examined the gene expression of arachidonate cyclooxygenase (COX) pathway leading to the delayed synthesis of PGE2 and PGF2alpha and their roles in adipogenesis after exposure of cultured cells to phorbol 12-myristate 13-acetate (PMA), which is a useful system for monitoring mitogen-induced changes. While the expression of COX-1 remained constitutive, mRNA and protein levels of COX-2 were up-regulated by treatment with PMA. Preadipocytes exhibited higher gene expression of cytosolic phospholipase A2alpha (cPLA2alpha) and PGF synthase. In contrast, three isoforms of PGE synthase are expressed constitutively during all phases. The delayed synthesis of PGE2 and PGF2alpha following the stimulation for 24 with a mixture of PMA and calcium ionophore A23187 was the highest in preadipocytes, reflecting the increased expression levels of cPLA2alpha and COX-2. Cultured cells treated with PMA during the differentiation phase and then exposed to the maturation medium, or cells treated with PMA in the maturation medium after the differentiation phase showed the suppression of adipogenesis in adipocytes. The attenuating effect of PMA was additionally enhanced when the cell were treated along with A32187 during the differentiation phase, suggesting the involvement of endogenous PGs. The cells at the stages of the differentiation and maturation phases were highly sensitive to exogenous PGE2 and PGF2alpha, respectively, resulting in the marked suppression of the stored fats in adipocytes. Taken together, these results provided the evidence for the distinct gene expression of isoformic enzymes in the COX pathway leading to the synthesis of PGE2 and PGF2alpha and the specific action of these prostanoids at different cycle stages of adipocytes.  相似文献   

14.
Recent evidence suggests that prostanoids are an important participant in the pathobiology of gastric adenocarcinoma, but the location and identity of cells in tumor-adjacent gastric mucosa able to synthesize and/or bind specific prostanoids is not clear. Using probes for cyclooxygenase 1 and 2 mRNA and protein as well as for the EP family of PGE(2) receptors, we sought to define the biology of prostanoids in adjacent human gastric mucosa at the site of tumor invasion.In mucosa adjacent to an invasive gastric adenocarcinoma, expression of cyclooxygenase was prominent, with COX 1 primarily in mucosal T lymphocytes surrounding nests of tumor cells. Densitometry showed these tumor-adjacent cells had substantial levels of COX 1 immunoreactive protein (relative intensity, 3.2). Cyclooxygenase 2 was newly expressed among these cells as well, but was limited in number (<25% of cyclooxygenase-positive T lymphocytes) in tumor-adjacent mucosa. Further, CD3(+) mononuclear cells, adjacent to tumor, strongly expressed prostanoid receptor EP(4) (relative intensity, 8.0), but cells with this receptor were not evident in the tumor itself. In contrast, normal gastric mucosa showed a consistent and structured expression of cyclooxygenase and PGE(2) receptor immunoreactive protein among mucosal cells. Cyclooxygenase 1 and PGE(2) receptor EP(4) were expressed on mucosal CD3(+) T lymphocytes in the lumenal (upper) third of gastric mucosa; and prostanoid receptors EP(2), EP(3) and EP(4), on gastric epithelia lining gastric pits. In situ hybridization with COX cDNAs confirmed these findings, and neither COX 2-specific mRNA nor protein was detected in normal gastric tissue. Our studies suggest that synthetic machinery and receptors for PGE(2), prominently expressed by T lymphocytes in gastric mucosa at the boundary of normal mucosa with tumor cells, may play a central role in prostanoid-driven tumorigenesis of this tissue.  相似文献   

15.
Generation of vasoactive prostanoids from arachidonic acid by cyclooxygenase (COX)-1 and COX-2 was investigated in anesthetized mice. Intravenous injections of the prostanoid precursor arachidonic acid increased pulmonary arterial pressure and decreased systemic arterial pressure. Pulmonary pressor and systemic depressor responses were attenuated by SC-560 and nimesulide, inhibitors of COX-1 and COX-2, in doses that did not alter responses to injected prostanoids. Pulmonary pressor responses to arachidonic acid were blocked and a depressor response was unmasked, whereas systemic depressor responses were not altered, by a thromboxane receptor antagonist. Pulmonary and systemic pressor responses to angiotensin II injections and systemic pressor responses to angiotensin II infusion were not modified by COX-1 or COX-2 inhibitors but were attenuated by losartan. Systemic depressor responses to arachidonic acid were smaller in COX-1 and COX-2 knockout mice, whereas responses to angiotensin II, norepinephrine, U-46619, endothelin-1, and PGE(1) were not different in COX-1 and COX-2 knockout and wild-type control mice. These results suggest that vasoactive prostanoids with pulmonary pressor and systemic vasodepressor activity are formed by COX-1 and COX-2 and are consistent with Western blot analysis and immunostaining showing the presence of COX-1 and COX-2. These data suggest that thromboxane A(2) (TxA(2)) is formed from the precursor by COX-1 and COX-2 in the lung and are in agreement with immunofluorescence studies showing thromboxane synthase. The present data suggest that COX-1- or COX-2-derived prostanoids do not modulate responses to angiotensin II or other vasoactive agents and that prostanoid responses are similar in CD-1 and C57BL/6 and in male and female mice.  相似文献   

16.
1. The role of prostanoids in 3-methylindole (3MI)-induced lung disease was investigated. Goats were infused with 3MI in propylene glycol at a dose of 35 mg 3MI/kg body weight. Control goats were infused with propylene glycol alone. 2. Blood was collected at regular intervals starting 24 hr before and ending 72 hr following 3MI infusion. In a second experiment, 3MI-treated goats were killed at 2, 6, 12, 24, 48 and 72 hr post-infusion. The concentrations of PGF2 alpha, PGE, 6-keto PGF1 alpha and TXB2 in plasma and lung of 3MI-infused and control goats were determined by radioimmunoassay. 3. Comparison of individual prostanoid concentrations showed that 3MI-infused and control goats exhibited similar plasma profiles for all four prostanoids measured. 4. In addition, prostanoid concentrations in lungs did not seem to be affected by 3MI infusion. 5. Thus, plasma and lung prostaglandin and TXB2 concentrations do not appear to be altered in 3MI-induced lung disease.  相似文献   

17.
Phorbol-12-myristate- 13-acetate (PMA) has been shown to induce hypertrophy of cardiac myocytes. The prostaglandin endoperoxide H synthase isoform 2 (cyclooxygenase-2, COX-2) has been associated with enhanced growth and/or proliferation of several types of cells. Thus we studied whether PMA induces COX-2 and prostanoid products PGE(2) and PGF(2alpha) in neonatal ventricular myocytes and whether endogenous COX-2 products participate in their growth. In addition, we examined whether PMA affects interleukin-1beta (IL-1beta) stimulation of COX-2 and PGE(2) production. PMA (0.1 micromol/l) stimulated growth, as indicated by a 1.6-fold increase in [(3)H]leucine incorporation. PMA increased COX-2 protein levels 2. 8-fold, PGE(2) 3.7-fold, and PGF(2alpha) 2.9-fold. Inhibition of either p38 kinase or protein kinase C (PKC) prevented PMA-stimulated COX-2. Inhibition of COX-2 with either indomethacin or NS-398 had no effect on PMA-stimulated [(3)H]leucine incorporation. Exogenous administration of PGF(2alpha), but not PGE(2), stimulated protein synthesis. Treatment with IL-1beta (5 ng/ml) increased COX-2 protein levels 42-fold, whereas cotreatment with IL-1beta and PMA stimulated COX-2 protein only 32-fold. IL-1beta did not affect control or PMA-stimulated protein synthesis. These findings indicate that: 1) PMA, acting through PKC and p38 kinase, enhances COX-2 expression, but chronic treatment with PMA partially inhibits IL-1beta stimulation of COX-2; and 2) exogenous PGF(2alpha) is involved in neonatal ventricular myocyte growth but endogenous COX-2 products are not.  相似文献   

18.
NO produced by the inducible NO synthase (NOS2) and prostanoids generated by the cyclooxygenase (COX) isoforms and terminal prostanoid synthases are major components of the host innate immune and inflammatory response. Evidence exists that pharmacological manipulation of one pathway could result in cross-modulation of the other, but the sense, amplitude, and relevance of these interactions are controversial, especially in vivo. Administration of 6 mg/kg LPS to rats i.p. resulted 6 h later in induction of NOS2 and the membrane-associated PGE synthase (mPGES) expression, and decreased constitutive COX (COX-1) expression. Low level inducible COX (COX-2) mRNA with absent COX-2 protein expression was observed. The NOS2 inhibitor aminoguanidine (50 and 100 mg/kg i.p.) dose dependently decreased both NO and prostanoid production. The LPS-induced increase in PGE(2) concentration was mediated by NOS2-derived NO-dependent activation of COX-1 pathway and by induction of mPGES. Despite absent COX-2 protein, SC-236, a putative COX-2-specific inhibitor, decreased mPGES RNA expression and PGE(2) concentration. Ketoprofen, a nonspecific COX inhibitor, and SC-236 had no effect on the NOS2 pathway. Our results suggest that in a model of systemic inflammation characterized by the absence of COX-2 protein expression, NOS2-derived NO activates COX-1 pathway, and inhibitors of COX isoforms have no effect on NOS2 or NOS3 (endothelial NOS) pathways. These results could explain, at least in part, the deleterious effects of NOS2 inhibitors in some experimental and clinical settings, and could imply that there is a major conceptual limitation to the use of NOS2 inhibitors during systemic inflammation.  相似文献   

19.
Biosynthesis of prostanoids was studies in vascular slices of human umbilical arteries, piglet aorta and vena cava as well as in cultured vascular cells of piglet aorta. After preincubation with radioactive labeled arachidonic acid, prostanoids in the incubation media of slices or cultured cells were measured by radioimmunoassay or by radioactivity determination of labeled compounds following separation on reserved-phase high performance liquid chromatography. In all vascular slices 6-keto-PGF1α was the main prostanoid found, followed by PGE2. Thromboxane B2 and PGF2α were also formed, but only in trace amounts. In cultured cells taken from the three layers of the vascular wall, the prostanoid profiles differed markedly from those obtained from vascular slices. Each cell strain showed a specific prostanoid pattern. Endothelial cells synthesized predominantly 6-keto-PGF1α and PGF2α. In smooth muscle cells no 6-keto-PGF1α could be detected; here the predominant prostanoid was PGE2. PGF2α was formed in smaller quantities. Fibroblasts synthesized all prostanoids (PGE2, PGF2α, TXB2, 6-keto-PGF1α), PGE2 and PGF2α being the major products. In vascular slices and in cultured endothelial cells, the predominant prostacyclin derivative detected was 6-keto-PGF1α; the enzymatic PGI2-metabolite, 6,15-diketo-PGF1α, could be detected only in piglet vena cava slices in small amounts.  相似文献   

20.
COX-2 and iNOS, good targets for chemoprevention of colon cancer   总被引:10,自引:0,他引:10  
Cyclooxygenase (COX)-2 has been suggested to play an important role in colon carcinogenesis. We found that the COX-2 selective inhibitor, nimesulide, reduces azoxymethane (AOM)-induced aberrant crypt foci (ACF) in rats and colon carcinogenesis in mice, as well as formation of intestinal polyps in Min mice. Thus, selective inhibitors of COX-2, which catalyzes the synthesis of prostanoids, could be good candidates as chemopreventive agents against colon cancer. Examination of the effect of prostanoid receptor deficiency and a selective antagonist of prostanoid receptor on the development of AOM-induced ACF in mice revealed the involvement of the EP1 receptor. Moreover, a selective EP1 antagonist reduced the number of intestinal polyps in Min mice. These results suggest that PGE2 contributes to colon carcinogenesis through binding to the EP1 receptor. Nitric oxide synthase (NOS) is known to be overexpressed in colon cancers of humans and rats, and a NOS inhibitor, L-NG-nitroarginine methyl ester, was found to inhibit the development of AOM-induced ACF in rats. Thus, NOS including iNOS could also be a good target for chemoprevention of colon cancer, as in the COX-2 case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号