首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin cleaves protein S at arginine residues 52 and 70 resulting in loss of cofactor activity and reduced Ca2+ ion binding. After thrombin cleavage the NH2-terminal region containing gamma-carboxyglutamic acid (Gla) is linked to the large COOH-terminal fragment by a disulfide bond. Measurements of the rate of disulfide bond reduction by thioredoxin in intact protein S showed that the disulfide bonds are largely inaccessible to thioredoxin in the presence of Ca2+ ions, whereas in the presence of EDTA apparently all of the disulfide bonds are rapidly reduced. Probing the reactivity of the disulfide bonds in thrombin-modified proteins indicated that the thrombin cleavage induces a conformational change in the protein. After thrombin cleavage of protein S, the domain containing gamma-carboxyglutamic acid could be removed by selective reduction with thioredoxin followed by alkylation of the sulfhydryl groups. Ca2+ ion binding was compared in intact protein S, thrombin-modified protein S, and Gla domainless protein S. The intact protein S bound several Ca2+ ions, and the binding was not saturable. Thrombin-modified protein S, whether intact or with the Gla domain removed by selective reduction, bound two to three Ca2+ ions with a KD of 15-20 microM. The Gla domain in thrombin-modified protein S thus does not contribute significantly to the high affinity Ca2+ ion binding. Thrombin cleavage of protein S may be of physiological importance in the regulation of blood coagulation.  相似文献   

2.
S100b protein, chemically modified by thioethanol groups (linked via disulfide bonds to two out of four Cys per dimer) was largely similar to reduced native S100b protein in its overall structure and differed only by small modifications extending, however, to the whole protein structure. Studies combining direct Ca2+ binding and associated conformational changes revealed that this chemical modification markedly increased the Ca2(+)-binding affinities (especially in the presence of physiological concentrations of K+ and Mg2+) and introduced a strong positive cooperativity. Different binding models are discussed and it emerges that in both proteins the Ca2(+)-binding sites are not equivalent and probably interact. Like the reduced protein, chemically modified S100b protein binds four Zn2+ ions in two classes of sites (of high and low affinities). Whereas the overall Zn2+ affinity was only slightly decreased, the binding sequence was probably reversed by the introduction of thioethanol groups. Moreover, in the presence of zinc, the Ca2+ affinities were higher and even identical, in both proteins.  相似文献   

3.
Hemorrhagic factor II (LHF-II) was isolated from Lachesis muta muta (Bushmaster snake) venom using column chromatographies on Sephadex G-100, CM-Sepharose CL-6B and two cycles on Sephadex G-50. This preparation was devoid of phospholipase A2 as well as of the enzymes active on arginine synthetic substrates (TAME and BAPNA) which are present in the crude venom. LHF-II was homogeneous by SDS-polyacrylamide gel electrophoresis, immunodiffusion and immunoelectrophoresis. Also, a single symmetrical boundary with a value of 2.59 S was obtained by ultracentrifugation. LHF-II contains 180 amino acid residues, has a molecular weight of 22,300, and an isoelectric point of 6.6. It contains one gatom zinc and two gatoms calcium per mol protein. The hemorrhagic factor possesses proteolytic activity toward various substrates such as, casein, dimethylcasein, hide powder azure, fibrinogen and fibrin. It hydrolyzes selectively the A alpha-chain of fibrinogen, leaving the B beta- and gamma-chains unaffected. LHF-II is activated by Ca2+ and inhibited by Zn2+. The hemorrhagic as well as the proteinase activity is inhibited by cysteine and by metal chelators such as EDTA, EGTA and 1,10-phenanthroline. Inhibitors of serine proteinases such as phenylmethanesulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI) have no effect on the hemorrhagic factor.  相似文献   

4.
The inactivation of a metalloproteinase from Pseudomonas fluorescens Biotype I with EDTA was investigated at 22 degrees C and 37 degrees C. At 22 degrees C proteolytic activity decreases linearly with time and an inactive apoenzyme is obtained by dialysis. Proteolytic activity can be restored with several metal-ions, Ca2+, Zn2+, Mg2+, Sr2+ and co2+ give the best results. Activity and substrate specificity are influenced by the metal-ions. Reactivation depends on the concentration of the metal-ions, optimum concentration is 1 mM for Ca2+ and 50 microM for Zn2+. The isoelectric point of the apoenzyme is around 8.0, this is about 0.3 pH-units lower than the isoelectric point of the native proteinase. At 37 degrees C inactivation follows first order kinetics and is irreversible because of autolysis as shown by a gel filtration-experiment.  相似文献   

5.
The effects of monovalent and divalent cations on the hemolytic activity of Cerebratulus lacteus toxin A-III were studied. The activity of cytolysin A-III is remarkably increased in isotonic, low ionic strength buffer, the HC50 (the toxin concentration yielding 50% lysis of a 1% suspension of erythrocytes after 45 min at 37 degrees C) being shifted from 2 micrograms per ml in Tris or phosphate-buffered saline to 20-30 ng per ml in sucrose or mannitol buffered with Hepes, corresponding to a 50-100-fold increase in potency. On the contrary, hemolytic activity decreases progressively as the monovalent cation concentration in the medium increases for Na+, K+, or choline salts. The divalent cations Ca2+ and Zn2+ likewise inhibit the cytolysin A-III activity, but more strongly than do the monovalent cations specified above. Zn2+ at a concentration of 0.3 mM totally abolishes both toxin A-III-dependent hemolysis of human erythrocytes and toxin-induced leakage from liposomes. The observation of similar effects in both natural membranes and artificial bilayers suggests an effect of Zn2+ on the toxin A-III-induced membrane lesion, especially since Zn2+ does not alter binding of the cytolysin. The dose-response curve for toxin A-III exhibits positive cooperativity, with a Hill coefficient of 2 to 3. However, analysis of toxin molecular weight by analytical ultracentrifugation reveals no tendency to aggregate at protein concentrations up to 2 mg per ml. These data are consistent with a post-binding aggregational step which may be affected by the ionic strength of the medium.  相似文献   

6.
A protein inhibitor of the Ca2+-dependent proteinase has been purified from bovine cardiac muscle by using the following steps in succession: salting out 17,600 X gmax supernatants from muscle homogenates in 50 mM Tris acetate, pH 7.5, 4 mM EDTA between 25 and 65% ammonium sulfate saturation; eluting between 25 and 120 mM KCl from a DEAE-cellulose column at pH 7.5; salting out between 30 and 60% ammonium sulfate saturation; Ultrogel-22 gel permeation chromatography at pH 7.5; heating to 80 degrees C followed by immediate cooling to 0 degree C; 6% agarose gel permeation chromatography in 4 M urea, pH 7.5; and elution from a phenyl-Sepharose hydrophobic column between 0.7 and 0.5 M ammonium sulfate. Approximately 1.16-1.69 mg of purified Ca2+-dependent proteinase inhibitor are obtained from 1 kg of bovine cardiac muscle, fresh weight. Bovine cardiac Ca2+-dependent proteinase inhibitor has an Mr of 115,000 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a pI of 4.85-4.95, very little alpha-helical structure, a very low specific absorbance of 1.647 (A1% 280), and very low contents of histidine, tryptophan, phenylalanine, and tyrosine. Bovine cardiac Ca2+-dependent proteinase inhibitor probably contains a single polypeptide chain in nondenaturing solvents. One 115-kDa inhibitor polypeptide inactivates 10 110-kDa millimolar Ca2+-requiring proteinase (millimolar Ca2+-dependent proteinase) molecules in assays of purified proteins. Inhibition of millimolar proteinase by the proteinase inhibitor did not change in the pH range 6.2-8.6. The inhibitor requires Ca2+ to bind to millimolar Ca2+-dependent proteinase. The Ca2+ concentration required for one-half-maximum binding of millimolar Ca2+-dependent proteinase to the inhibitor was 0.53 mM, compared with a Ca2+ concentration of 0.92 mM required for one-half maximum activity of millimolar Ca2+-dependent proteinase in the absence of the proteinase inhibitor. Unless millimolar Ca2+-dependent proteinase is located subcellularly in a different place than the proteinase inhibitor or unless the proteinase/inhibitor interaction is regulated, millimolar proteinase could never be active in situ.  相似文献   

7.
Acidic proteinase from the trout spawn is 640 fold purified (yield 22%). Purification includes autolysis, acid treatment, ammonium sulphate fractionation, G-100 Sephadex gel-filtration, ion-exchange chromatography on DEAE-cellulose. Molecular mass of the enzyme under study is 70 kDa according to the data of gel-filtration. Acidic proteinase displays its greatest activity towards hemoglobin (pH 4.0, 37 degrees C) and is inhibited completely by EDTA, by 50%--by Pb2+ and soya inhibitor of trypsin and 2.8 times activated by Zn2+. Enzyme activity is not affected by dithiotreitol, iodine acetate, phenylmethylsulphonylfluoride parachloromercurybenzoate, Hg2+, Na+, Co2+, Ca2+.  相似文献   

8.
Two proteinases (proteinases I and II) have been purified from Crotalus adamanteus venom to the stage of electrophoretic homogeneity and proteinase II has been crystallized. The proteinase differ slightly in molecular weight and amino acid composition. Both are metalloenzymes requiring Zn2+ or Ca2+, or both; neither requires thiol compounds for activation. The proteinases are free of esterolytic activity against benzoly-L-arginine ethyl ester and benzoyl--tyrosine ethyl ester. Proteinase II cleaves the oxidized B chain of insulin at the bonds Phe1-Val2, His5-Leu6, His10-Leu11, Ala14-Leu15, Leu15-Tyr16, and Tyr-16-Leu17. Digestion of polylsine and polyarginine by proteinase II liberates products ranging from dodecapeptides to hexapeptides. Proteinases I and II catalytically inactive human plasma alpha 1-proteinase inhibitor (54,000 daltons). Electrophoretic analysis of the reaction of proteinase II with alpha 1-proteinase inhibitor reveals that an inactivated inhibitor species of 50,000 daltons is formed, and a peptide of 4,000 daltons is released. The gradual disappearance of the native inhibitor results in the corresponding loss of inhibitory activity against trypsin and chymotrypsin.  相似文献   

9.
Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein with three disulfide bonds that belongs to the Kunitz family of serine proteinase inhibitors. BPTI is an extremely potent inhibitor of trypsin, but it also specifically binds to various active and inactive serine proteinase homologs with KD values that range over eight orders of magnitude. We previously described an interaction of BPTI at an intracellular site that results in the production of discrete subconductance events in large conductance Ca2+ activated K+ channels (Moss, G.W.J., and E. Moczydlowski. 1996, J. Gen. Physiol, 107:47-68). In this paper, we summarize a variety of accumulated evidence which suggests that BPTI binds to a site on the KCa channel protein that structurally resembles a serine proteinase. One line of evidence includes the finding that the complex of BPTI and trypsin, in which the inhibitory loop of BPTI is masked by interaction with trypsin, is completely ineffective in the production of substate events in the KCa channel. To further investigate this notion, we performed a sequence analysis of the alpha-subunit of cloned slowpoke KCa channels from Drosophila and mammals. This analysis suggests that a region of approximately 250 residues near the COOH terminus of the KCa channel is homologous to members of the serine proteinase family, but is catalytically inactive because of various substitutions of key catalytic residues. The sequence analysis also predicts the location of a Ca(2+)-binding loop that is found in many serine proteinase enzymes. We hypothesize that this COOH-terminal domain of the slowpoke KCa channel adopts the characteristic double-barrel fold of serine proteinases, is involved in Ca(2+)-activation of the channel, and may also bind other intracellular components that regulate KCa channel activity.  相似文献   

10.
cis-Fatty acids such as oleic acid or linoleic acid have been previously shown to induce full activation of protein kinase C in the absence of Ca2+ and phospholipids (Murakami, K., and Routtenberg, A. (1985) FEBS Lett. 192, 189-193; Murakami, K., Chan, S.Y., and Routtenberg, A. (1986) J. Biol. Chem. 261, 15424-15429). In this study, we have investigated the effects of various metal ions on protein kinase C activity without the interference of Ca2+ since cis-fatty acid requires no Ca2+ for protein kinase C activation. Here we report a specific interaction of Zn2+ with protein kinase C in either a positive or negative cooperative fashion in concert with Ca2+. At low concentrations (approximately 5 microM) of Ca2+, Zn2+ enhances protein kinase C activity induced by both oleic acid and phosphatidylserine/diolein. In contrast, Zn2+ inhibits the activity at higher concentrations (over 50 microM) of Ca2+. In the absence of Ca2+, Zn2+ shows no effect on protein kinase C activity. Our results suggest that Zn2+ does not recognize or interact with protein kinase C in the absence of Ca2+, that protein kinase C possesses high and low affinity Ca2+-binding sites, and that at least one Zn2+-binding site exists which is distinct from Ca2+-binding sites.  相似文献   

11.
The effect of some inhibitors and bivalent metal cations (Mn2+, Ca2+, Fe2+, Zn2+, Mg2+, Co2+ and Cu2+) on the proteolytic activity of two Bacillus mesentericus strains (strain 8 and strain 64 M-variant) was comparatively studied. The both enzymes were shown to be serine proteinases, but the proteinase of strain 64 was also a metal-dependent enzyme. Metal ions exerted no essential effect on the proteinase of strain 8. Ca2+ and Mg2+ ions stimulated the proteinase activity of strain 64 whereas Fe2+ and Zn2+ ions inhibited it in the case of three substrates. Therefore, the two proteinases are different.  相似文献   

12.
Stabilization vs. degradation of Staphylococcus aureus metalloproteinase   总被引:1,自引:0,他引:1  
Purified Staphylococcus aureus metalloproteinase contains trace amounts of a serine proteinase which rapidly degrades the metalloproteinase when EDTA is present. However, no degradation occurs when Ca2+ is added or if the serine proteinase is removed by immunoaffinity chromatography. Selective chelation of Zn2+ by o-phenanthroline, which reversibly inactivates the metalloproteinase, does not result in the degradation of the apometalloproteinase, even with excess of serine proteinase. These data are interpreted as follows: EDTA chelates enzyme-bound Ca2+ and Zn2+, causing irreversible inactivation as well as a conformational change in the metal-free protein. This allows proteolysis by the contaminating serine proteinase and explains why the metalloproteinase purified from serine proteinase-deficient strains of S. aureus was previously thought to be stable to autolysis.  相似文献   

13.
The enzymatic activity of proteinase K is controlled by calcium   总被引:4,自引:0,他引:4  
The fungal proteinase K (EC 3.4.21.14) is a very potent unusually stable member of the subtilisin family. Its X-ray structure determined at 0.15-nm resolution shows two bound Ca2+ ions. Ca1 is in near-ideal pentagonal bipyramidal configuration with Asp200 carboxylate and Pro175 peptide C = O in an apical, and Val177 peptide C = O and four water molecules in an equatorial position, whereas Ca2 displays incomplete octahedral coordination with the carboxylate of Asp260, the peptide C = O of Val16 and the two water molecules. Scatchard analysis of the titration of Ca2+-free proteinase K with Ca2+ yields a single dissociation constant (7.6 +/- 2.5) x 10(-8) M associated with the tightly bound Ca1 whereas Ca2 is so weakly bound that it cannot be titrated. If proteinase K is depleted of Ca2+ by treatment with EDTA, followed by gel filtration, its enzymatic activity drops within 6 h to 20% of its original value, without autolysis. Addition of excess Ca2+ immediately raises the residual activity to 28%, but full activity is not achieved. Removal of Ca2+ triggers a conformational change of the substrate recognition site because there is a direct connection, via secondary structure hydrogen bonds, between the Ca1 binding site and the substrate-recognition site. This is indicated further by circular dichroism and fluorescence-spectroscopic data, and by reversed-phase FPLC, carried out in the presence and absence of Ca2+, but the overall structure of the enzyme is not affected. Depletion of Ca2+ also influences binding of longer peptide inhibitors of the chloromethane type, it increases the rate of autolysis after about 48 h, it reduces the thermal stability (measured by activity tests from 65 degrees C to 46 degrees C), and it enhances the deactivation by 8 M urea which inactivates to only 65%, whereas sodium dodecyl sulfate totally inactivates at a concentration of 12.5%.  相似文献   

14.
7-Chloro-4-nitro-benzofurazan selectively modifies one PPase Tyr residue per subunit and lowers the enzyme activity. Hydrolysis of the modified protein by trypsin and then by chymotrypsin produces the 82-89 peptide which possesses modified Tyr-89. Substrate analog (CaPPi) and the product of the enzyme reaction, MgPi, protect the enzyme against inactivation. Ions of metal-activators (Mg2+, Zn2+) exert no influence on the inactivation rate. On the contrary, the Ca(2+)-inhibitor of the enzyme accelerates the reaction by binding to the high-affinity site, and effectively decreases it when Ca2+ binds to both sites. Mg2+ competes with Ca2+ for one binding site, which is the low affinity site for Mg2+ and the high-affinity site for Ca2+. The Ca2+ saturation of the high-affinity site decreases the pK2 of Tyr-89, probably due to direct coordination between Tyr and Ca2+. The observed properties of Tyr-89 modification enable us to propose that Tyr-89 serves as a proton donor for phosphate releasing during enzymatic hydrolysis of pyrophosphate. The Ca2+ inhibitory effect on the enzyme activity may be due to the existence of a Tyr-89 bond in the Ca2+ pyrophosphatase complex.  相似文献   

15.
The progesterone-induced purple phosphatase isolated from the uterine flushings of pigs is activated by a variety of reagents that cleave disulfide bonds, including 2-mercaptoethanol, dithiothreitol, L-ascorbate, L-cysteine, sulfite, and cyanide. It is inhibited by various mercurials, iodoacetamide, O-iodosobenzoate, and hydrogen peroxide. Thiols increase the specific phosphatase activity from 25 to about 300 units per mg of enzyme. This activation is accompanied by a shift in the extinction maximum to higher energy to yield a protein with a pink coloration. Following maximum activation there is a gradual decrease in enzyme activity and protein color which is accompanied by loss of ferrous iron from the protein. Sodium dithionite at 10 mM or higher causes an immediate inhibition of phosphatase activity and bleaching of color, and can be used to prepare the iron-free apoprotein. The latter can be partially reactivated by Fe3+ salts but not by Fe2+. The Fe3+ restores the pink form of the enzyme with a specific activity of about 200 units/mg of protein. Cu2+ also causes some reactivation, but other metal ions were ineffective. ESR studies showed that the pink form of phosphatase contains approximately 1 atom of high spin ferric iron per molecule. It is concluded that the phosphatase requires a free thiol and Fe3+ for activity. Reduction of the iron leads to complete loss of both color and enzyme activity. The color change from purple to pink represents disulfide reduction and is not due to reduction of iron.  相似文献   

16.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

17.
The dihydropyridine receptor is associated with the L-type Ca2+ channel in the cell membrane. In this study we have examined the effects of group-specific modification on dihydropyridine binding in heart sarcolemmal membranes isolated from the rabbit. Specifically, dithiothreitol and glutathione were employed to assess the possible role of disulfide (-SS-) bonds in the binding of [3H]dihydropyridines. NEM, PCMS and iodoacetamide were employed to examine the effect of blocking free sulfhydryl groups (-SH) on the binding of [3H]dihydropyridines to their receptor in heart sarcolemma. Glutathione inhibited [3H]PN200-110 binding to sarcolemmal membranes 100%, with an IC50 value of 50 microM, while DTT inhibited maximally by 75% with an IC50 value in the millimolar range. Alkylation of free sulfhydryl groups by NEM or iodoacetamide inhibited binding of [3H]PN200-110 binding in cardiac sarcolemma approx. 40-60%. Blocking of free sulfhydryl groups by PCMS completely inhibited [3H]PN200-110 binding to their receptor in sarcolemmal membranes in a dose-dependent manner with an IC50 value of 20 microM. These results suggest the involvement of disulfide bonds and free sulfhydryl groups in DHP binding to the L-type Ca2+ channel in heart muscle. We also examined the effect of membrane phosphorylation on the specific binding of the dihydropyridine [3H]nitrendipine to its receptor. Phosphorylation was studied in cardiac sarcolemmal as well as skeletal muscle transverse-tubule membranes. Phosphorylation due to endogenous protein kinase and cAMP-dependent protein kinase was without effect on [3H]nitrendipine binding in both cardiac sarcolemmal and skeletal muscle membranes. Addition of exogenous calmodulin under conditions known to promote Ca2+/calmodulin-dependent phosphorylation increased [3H]nitrendipine binding 20% with no alteration in KD in both types of membrane preparation. These results suggest a role for calmodylin in dihydropyridine binding to L-type Ca2+ channels.  相似文献   

18.
A hemorrhagic toxin with lethal and arginine ester hydrolytic activities was isolated from Heloderma horridum (beaded lizard) venom by Sephadex G-75, DEAE-Sephacel, and Q-Sepharose column chromatography. The hemorrhagic toxin was shown to be homogeneous as demonstrated by a single band on acrylamide gel electrophoresis and immunodiffusion. Its molecular weight is approximately 31,000 with an isoelectric point of 3.9. Hemorrhagic, lethal, and benzoyl-L-arginine ethyl ester hydrolytic activities of this preparation were inhibited by diisopropyl fluorophosphate (DFP), N-bromosuccinimide, and beta-mercaptoethanol, suggesting that serine, tryptophan, and disulfide bonds are involved in these activities. Also there was an increase in creatine kinase activity in mice serum which is an indicator that the toxin is involved in muscle damage. This protein was stable to heat and pH ranges between 2 and 11. The Michaelis constant (Km), for benzoyl-L-arginine ethyl ester, and inhibition constant (Ki), for DFP, were found to be 6.9 X 10(-3) and 1.93 X 10(-4) M, respectively.  相似文献   

19.
The structure of native and progressively reduced human factor VIII/von Willebrand factor (FVIII/vWF) was examined by electron microscopy and SDS gel electrophoresis and then correlated with its biological activities. Highly resolved electron micrographs of well-spaced, rotary- shadowed FVIII/vWF molecules showed their structure to consist of a very flexible filament that contains irregularly spaced small nodules. Filaments ranged from 50 to 1,150 nm with a mean length of 478 nm and lacked fixed, large globular domains as seen in fibrinogen and IgM. A population of multimeric FVIII/vWF species ranging in molecular weight from 1 to 5 million daltons and differing in size alternately by one and two subunits was observed on SDS-2% polyacrylamide-0.5% agarose gel electrophoresis. With progressive reduction of disulfide bonds by dithiothreitol (DTT), the electron microscopic size of FVIII/vWF decreased in parallel with increased electrophoretic mobility on SDS- agarose gels; between 0.1 and 0.5 mM DTT its structure changed from predominantly fibrillar species to large nodular forms. A 50% loss of vWF specific activity and FVIII procoagulant activity occurred at 0.4 mM DTT and 1 mM DTT, respectively, corresponding to the reduction of 4 and 12 disulfide bonds of the 62 disulfides per 200,000-dalton subunit. We conclude that reduction of a few critical disulfide bonds results in a major structural change by electron microscopy and a concomitant loss of approximately 50% of the vWF function.  相似文献   

20.
The gamma-aminobutyric acid, type A (GABAA), receptor ion channel is lined by the second membrane-spanning (M2) segments from each of five homologous subunits that assemble to form the receptor. Gating presumably involves movement of the M2 segments. We assayed protein mobility near the M2 segment extracellular ends by measuring the ability of engineered cysteines to form disulfide bonds and high affinity Zn(2+)-binding sites. Disulfide bonds formed in alpha1beta1E270Cgamma2 but not in alpha1N275Cbeta1gamma2 or alpha1beta1gamma2K285C. Diazepam potentiation and Zn2+ inhibition demonstrated that expressed receptors contained a gamma subunit. Therefore, the disulfide bond in alpha1beta1E270Cgamma2 formed between non-adjacent subunits. In the homologous acetylcholine receptor 4-A resolution structure, the distance between alpha carbon atoms of 20' aligned positions in non-adjacent subunits is approximately 19 A. Because disulfide trapping involves covalent bond formation, it indicates the extent of movement but does not provide an indication of the energetics of protein deformation. Pairs of cysteines can form high affinity Zn(2+)-binding sites whose affinity depends on the energetics of forming a bidentate-binding site. The Zn2+ inhibition IC50 for alpha1beta1E270Cgamma2 was 34 nm. In contrast, it was greater than 100 microM in alpha1N275Cbeta1gamma2 and alpha1beta1gamma2K285C receptors. The high Zn2+ affinity in alpha1beta1E270Cgamma2 implies that this region in the beta subunit has a high protein mobility with a low energy barrier to translational motions that bring the positions into close proximity. The differential mobility of the extracellular ends of the beta and alpha M2 segments may have important implications for GABA-induced conformational changes during channel gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号