首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neonatal rats exposed to 60% O(2) for 14 days develop lung changes compatible with human bronchopulmonary dysplasia and pulmonary hypertension. Our aim was to evaluate and compare the newborn and adult rat pulmonary vascular and airway smooth muscle force generation and relaxation potential after exposure to 60% O(2) for 14 days. Vascular and airway intrapulmonary rings 100 microm in diameter were mounted on a myograph and bathed in Krebs-Henseleit solution bubbled with air- 6% CO(2) at 37 degrees C. Significant age-dependent changes in intrapulmonary arteries and their neighboring airway muscle properties were observed. Whereas hyperoxia enhanced force in neonatal vascular and airway muscle, the opposite was seen in adult samples. No changes in endothelium-dependent vascular relaxation were observed at either age, but the dose response to an endothelium-independent NO donor was altered. In the newborn experimental animals, the relaxation was reduced, whereas, in their adult counterparts, it was enhanced. After O(2) exposure, the bronchial muscle relaxation response to epithelium-dependent and -independent stimulation was not altered in either age group, whereas the epithelium-dependent response was decreased only in the adult. The antioxidant Trolox, or an endothelin-A and -B receptor antagonist, reversed the vascular and airway muscle's hyperoxia-induced changes. We conclude that chronic O(2) exposure in the newborn rat results in enhanced lung vascular and airway muscle contraction potential via a mechanism involving reactive oxygen species and the endothelin pathway. The present findings also suggest that the newborn is more susceptible to airway hyperresponsiveness after chronic O(2) exposure.  相似文献   

2.
Exposure of cultured bovine pulmonary artery endothelial cells to varying levels of hypoxia (10% or 0% O2) for 4 hours resulted in a significant dose-dependent inhibition in endothelial prostacyclin synthesis (51% and 98%, at the 10% and 0% O2 levels respectively, p less than 0.05, compared to 21% O2 exposure values). Release of 3H-arachidonic acid from cellular pools was not altered by hypoxia. Some of the cells were incubated with arachidonic acid (20 microM for 5 min) or PGH2 (4 microM for 2 min) immediately after exposure. Endothelium exposed to 0% O2, but not to 10% O2, produced significantly less prostacyclin after addition of either arachidonic acid (25 +/- 5% of 21% O2 exposure values, n = 6, p less than 0.01) or PGH2 (31 +/- 3% of 21% O2 exposure values, n = 6, p less than 0.05). These results suggest that hypoxia inhibits cyclooxygenase at the 10% O2 level and both cyclooxygenase and prostacyclin synthetase enzymes at the 0% O2 exposure levels. Exposure of aortic endothelial cells resulted in a 44% inhibition of prostacyclin at the 0% exposure level. No significant alteration in prostacyclin production was found in pulmonary vascular smooth muscle cells exposed to hypoxia. These data suggest that the increased prostacyclin production reported in lungs exposed to hypoxia is not due to a direct effect of hypoxia on the main prostacyclin producing cells of the pulmonary circulation.  相似文献   

3.
Exposure of the newborn lung to hyperoxia is associated with impaired alveolar development. In newborn rats exposed to hyperoxia and studied at day 14 of life, retinoic acid (RA) treatment improved survival and increased lung collagen but did not improve alveolar development. To determine whether RA treatment during exposure to hyperoxia results in late improvement in alveolarization, we treated newborn rats with RA and hyperoxia from day 3 to day 14 and then weaned O2 to room air by day 20, and studied the animals on day 42. O2-exposed animals had larger mean lung volumes, larger alveoli, and decreased gas-exchange tissue relative to air-exposed animals, whereas RA-treated O2-exposed animals were not statistically different from air-exposed controls. Relative to control animals, elastin staining at day 14 was decreased in hyperoxia-exposed lung independent of RA treatment, and, at day 42, elastin staining was similar in all treatment groups. At day 14, elastin gene expression was similar in all treatment groups, whereas at day 42 lung previously exposed to hyperoxia showed increased elastin signal independent of RA treatment. These results indicate that RA treatment during hyperoxia exposure promotes septal formation without evidence of effects on elastin gene expression after 4 wk of recovery.  相似文献   

4.
The purpose of this study was to determine whether pulmonary venous pressure increases during alveolar hypoxia in lungs of newborn pigs. We isolated and perfused with blood the lungs from seven newborn pigs, 6-7 days old. We maintained blood flow constant at 50 ml.min-1.kg-1 and continuously monitored pulmonary arterial and left atrial pressures. Using the micropuncture technique, we measured pressures in 10 to 60-microns-diam venules during inflation with normoxic (21% O2-69-74% N2-5-10% CO2) and hypoxic (90-95% N2-5-10% CO2) gas mixtures. PO2 was 142 +/- 21 Torr during normoxia and 20 +/- 4 Torr during hypoxia. During micropuncture we inflated the lungs to a constant airway pressure of 5 cmH2O and kept left atrial pressure greater than airway pressure (zone 3). During hypoxia, pulmonary arterial pressure increased by 69 +/- 24% and pressure in small venules increased by 40 +/- 23%. These results are similar to those obtained with newborn lambs and ferrets but differ from results with newborn rabbits. The site of hypoxic vasoconstriction in newborn lungs is species dependent.  相似文献   

5.
Many pathological conditions linked to cigarette smoking are caused by the production of reactive oxygen species (ROS). The present study was conducted to analyze the effect of ROS on the lungs of Swiss mice exposed to cigarette smoking, focusing on autophagy-mediated mechanisms, and investigate the involvement of SESN2, AMPK, and mTOR signaling. Mice were exposed to cigarette smoke (CS) for 7, 15, 30, 45, and 60 days; the control group was not exposed to CS. Only mice exposed to CS for 45 days were selected for subsequent N-acetylcysteine (NAC) supplementation and smoke cessation analyses. Exposure to CS increased the production of ROS and induced molecular changes in the autophagy pathway, including an increase in phosphorylated AMPK and ULK1, reduction in phosphorylated mTOR, and increases in SESN2, ATG12, and LC3B levels. NAC supplementation reduced ROS levels and reversed all molecular changes observed upon CS treatment, suggesting the involvement of oxidative stress in inducing autophagy upon CS exposure. When exposure to CS was stopped, there were decreases in the levels of oxidative stress, AMPK and ULK1 phosphorylation, and autophagy-initiating molecules and increase in mTOR phosphorylation. In conclusion, these results suggest the involvement of ROS, SESN2, AMPK, and mTOR in the CS-induced autophagic process in the lung.  相似文献   

6.
The effect of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the uptake of 14C-labelled 5-hydroxytryptamine (5-HT) and its metabolism to 5-hydroxyindol-3-ylacetic acid (5-HIAA) was investigated in rat lungs perfused in situ. The rate of accumulation of 14C-labelled 5-HIAA in the tissue, monitored as an index of 5-HT metabolism, was linear with time, displayed saturation kinetics and remained stable for at least 180 min of perfusion. Exposure of the lungs to halothane (4%) for 60 min reversibly reduced production of 5-HIAA through an increase in the apparent Km for metabolism of the amine from 1.45 to 3.52 microM (P less than 0.001); the anaesthetic had no effect on the Vmax. of the process. The magnitude of the inhibition increased with time of exposure to the anaesthetic. Halothane exposure did not alter the distribution of [3H]sorbitol or [14C]5-HT, pulmonary vascular resistance, levels of ATP or the kinetics of amino acid transport in the tissue. Inhibition of protein synthesis by cycloheximide did not mimic the effect of the anaesthetic. These observations, together with those made in lungs exposed to inhibitors of 5-HT uptake and metabolism, were consistent with a halothane-mediated inhibition of 5-HT uptake, which did not appear to involve non-specific changes in membrane permeability.  相似文献   

7.
Endothelial nitric oxide (NO) synthase (eNOS) expression and activity are decreased in fetal lambs with persistent pulmonary hypertension (PPHN). We sought to determine the impact of mechanical ventilation with O(2) with or without inhaled NO (iNO) or recombinant human SOD (rhSOD) on eNOS in the ductal ligation model of PPHN. PPHN lambs and age-matched controls were ventilated with 100% O(2) for 24 h alone or combined with 20 ppm iNO continuously or a single dose of rhSOD (5 mg/kg) given intratracheally at delivery. In 1-day spontaneously breathing lambs, eNOS expression in resistance pulmonary arteries increased relative to fetal levels. eNOS expression increased in control lambs ventilated with 100% O(2), but not in PPHN lambs. Addition of iNO or rhSOD increased eNOS expression and decreased generation of reactive oxygen species (ROS) in PPHN lambs relative to those ventilated with 100% O(2) alone. However, only rhSOD restored eNOS function, increased tetrahydrobiopterin (BH(4)), a critical cofactor for eNOS function, and restored GTP cyclohydrolase I expression in isolated vessels and lungs from PPHN lambs. These data suggest that ventilation of PPHN lambs with 100% O(2) increases ROS production, blunts postnatal increases in eNOS expression, and decreases available BH(4) in PPHN lambs. Although the addition of iNO or rhSOD diminished ROS production and increased eNOS expression, only rhSOD improved eNOS function and levels of available BH(4). Thus therapies designed to decrease oxidative stress and restore eNOS coupling, such as rhSOD, may prove useful in the treatment of PPHN in newborn infants.  相似文献   

8.
Chronic oxygen exposure in the newborn rat results in lung isoprostane formation, which may contribute to the pulmonary hypertension evident in this animal model. The purpose of this study was to investigate the pulmonary arterial smooth muscle responses to 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2a)) in newborn rats exposed to 60% O2 for 14 days. Because, in the adult rat, 8-iso-PGF(2alpha) may have a relaxant effect, mediated by nitric oxide (NO), we also sought to evaluate the pulmonary arterial NO synthase (NOS) protein content and NO release in the newborn exposed to chronic hyperoxia. Compared with air-exposed control animals, 8-iso-PGF(2a) induced a significantly greater force (P < 0.01) and reduced (P < 0.01) relaxation of precontracted pulmonary arteries in the 60% O2-treated animals. These changes were reproduced in control pulmonary arteries by NOS blockade by using NG-nitro-L-arginine methyl ester. Pulmonary arterial endothelial NOS was unaltered, but the inducible NOS protein content was significantly decreased (P < 0.01) in the experimental group. Pulmonary (P < 0.05) and aortic (P < 0.01) tissue ex vivo NO accumulation was significantly reduced in the 60% O2-treated animals. We speculate that impaired pulmonary vascular tissue NO metabolism after chronic O2 exposure potentiates 8-iso-PGF(2alpha)-induced vasoconstriction in the newborn rat, thus contributing to pulmonary hypertension.  相似文献   

9.
Exposure of mammals to hyperoxia causes pulmonary and ocular pathology. Hyperoxic damage and cell death may derive from enhanced intracellular formation of reactive oxygen species (ROS), probably of mitochondrial origin. There is, however, controversy on this point. When wild-type and respiration-deficient (rho(o)) HeLa cells were cultured in 80% O2, wild-type cells stopped growing after 5 days and died thereafter whereas rho(o) cells survived and grew to confluence. This tolerance of rho(o) cells for hyperoxia was not associated with greater resistance to oxidants such as hydrogen peroxide and t-butyl hydroperoxide. Under both 20% and 80% O2, rho(o) cells exhibited substantially decreased ROS production, and, under 80% O2, rho(o) cells showed no suppression of aconitase activity or mitochondrial protein carbonyl formation. Replacement of normal mitochondria in rho(o) cells restored ROS production and susceptibility to hyperoxia. Two other approaches that diminished mitochondrial ROS generation also increased tolerance for hyperoxia. HeLa cells constantly exposed to the protonophoric uncoupler carbonyl cyanide m-chlorophenylhydrazone, which enhances respiration but decreases ROS production, showed preferential survival under 80% O2, as did HeLa cells treated with chloramphenicol, which suppresses both respiration and mitochondrial ROS production. We conclude that interactions between respiring mitochondria and O2 are primarily responsible for hyperoxic cell damage.  相似文献   

10.
Pseudomonas. aeruginosa (PA) is a leading cause of nosocomial pneumonia in patients receiving mechanical ventilation with hyperoxia. Exposure to supraphysiological concentrations of reactive oxygen species during hyperoxia may result in macrophage damage that reduces their ability to phagocytose PA. We tested this hypothesis in cultured macrophage-like RAW 264.7 cells and alveolar macrophages from mice exposed to hyperoxia. Exposure to hyperoxia induced a similarly impaired phagocytosis of both the mucoid and the nonmucoid forms of PA in alveolar macrophages and RAW cells. Compromised PA phagocytosis was associated with cytoskeleton disorganization and actin oxidation in hyperoxic macrophages. To test whether moderate concentrations of O(2) limit the loss of phagocytic function induced by > or =95% O(2), mice and RAW cells were exposed to 65% O(2). Interestingly, although the resulting lung injury/cell proliferation was not significant, exposure to 65% O(2) resulted in a marked reduction in PA phagocytosis that was comparable to that of > or =95% O(2). Treatment with antioxidants, even post hyperoxic exposure, preserved actin cytoskeleton organization and phagocytosis of PA. These data suggest that hyperoxia reduces macrophage phagocytosis through effects on actin functions which can be preserved by antioxidant treatment. In addition, administration of moderate rather than higher concentrations of O2 does not improve macrophage phagocytosis of PA.  相似文献   

11.
Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ~140 and ~180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ~80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ~50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ~90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.  相似文献   

12.
Xanthine oxidase (XO)-derived reactive oxygen species (ROS) formation contributes to experimental chronic hypoxic pulmonary hypertension in adults, but its role in neonatal pulmonary hypertension has received little attention. In rats chronically exposed to hypoxia (13% O(2)) for 14 days from birth, we examined the effects of ROS scavengers (U74389G 10 mg.kg(-1).day(-1) or Tempol 100 mg.kg(-1).day(-1) ip) or a XO inhibitor, Allopurinol (50 mg.kg(-1).day(-1) ip). Both ROS scavengers limited oxidative stress in the lung and attenuated hypoxia-induced vascular remodeling, confirming a critical role for ROS in this model. However, both interventions also significantly inhibited somatic growth and normal cellular proliferation in distal air spaces. Hypoxia-exposed pups had evidence of increased serum and lung XO activity, increased vascular XO-derived superoxide production, and vascular nitrotyrosine formation. These changes were all prevented by treatment with Allopurinol, which also attenuated hypoxia-induced vascular remodeling and partially reversed inhibited endothelium-dependent arterial relaxation, without affecting normal growth and proliferation. Collectively, our findings suggest that XO-derived superoxide induces endothelial dysfunction, thus impairing pulmonary arterial relaxation, and contributes to vascular remodeling in hypoxia-exposed neonatal rats. Due to the potential for adverse effects on normal growth, targeting XO may represent a superior "antioxidant" strategy to ROS scavengers for neonates with pulmonary hypertension.  相似文献   

13.
To determine the effect of lung inflation and left atrial pressure on the hydrostatic pressure gradient for fluid flux across 20- to 60-microns-diam venules, we isolated and perfused the lungs from newborn rabbits, 7-14 days old. We used the micropuncture technique to measure venular pressures in some lungs and perivenular interstitial pressures in other lungs. For all lungs, we first measured venular or interstitial pressures at a constant airway pressure of 5 or 15 cmH2O with left atrial pressure greater than airway pressure (zone 3). For most lungs, we continued to measure venular or interstitial pressures as we lowered left atrial pressure below airway pressure (zone 2). Next, we inflated some lungs to whichever airway pressure had not been previously used, either 5 or 15 cmH2O, and repeated venular or interstitial pressures under one or both zonal conditions. We found that at constant blood flow a reduction of left atrial pressure below airway pressure always resulted in a reduction in venular pressure at both 5 and 15 cmH2O airway pressures. This suggests that the site of flow limitation in zone 2 was located upstream of venules. When left atrial pressure was constant relative to airway pressure, the transvascular gradient (venular-interstitial pressures) was greater at 15 cmH2O airway pressure than at 5 cmH2O airway pressure. These findings suggest that in newborn lungs edema formation would increase at high airway pressures only if left atrial pressure is elevated above airway pressure to maintain zone 3 conditions.  相似文献   

14.
Changes in a host's environment (i.e. physical or chemical) can alter normal immune function. In aquatic organisms, exposure to stress can result in significant changes in innate immunity. In the natural environment, fish are exposed to multiple stressors simultaneously. Temperature change and/or chemical exposure as individual environmental stressors have been shown in various fish species to alter all aspects of the immune response. These same stressors have also been shown to alter plasma steroid levels in exposed fish. For this study, the effects of elevated temperature and nickel pollution on specific immune parameters of Japanese medaka (Oryzias latipes) were determined. Fish were exposed for 1, 7 or 14d to either: waterborne nickel (Ni) at the nominal concentration of 125ppb; a 5 degrees C (+/-0.5 degrees C) rapid increase in water temperature; or, both potential stressors in combination. Medaka maintained at room temperature (25 degrees C+/-1 degrees C) served as the controls. Altered function of the innate and adaptive arms of the immune response was evaluated by assessing kidney macrophage-mediated superoxide (O(2)(-)) production and splenic T-cell proliferation, respectively. Plasma cortisol levels were analysed in the same fish as a marker of the physiological stress response. While kidney cell number was unaffected by exposure of fish to either stressor alone or both factors in combination, spleen cellularity was decreased (compared to control fish) in medaka exposed for 1d to thermal stress in combination with Ni, and to a lesser extent to thermal stress alone. T-lymphocyte proliferation by medaka splenocytes was not affected by any exposure paradigm. Unstimulated intracellular O(2)(-) production by kidney phagocytes was significantly elevated (compared to control) in medaka exposed for 1d to either thermal stress alone or temperature change in combination with Ni; by 7d, only the stressor combination significantly increased baseline O(2)(-) production. Resting levels of extracellular O(2)(-) production was significantly reduced in fish maintained for 1d at the elevated temperature. Effects on phorbol 12-myristate 13 acetate (PMA)-stimulated intracellular and extracellular O(2)(-) production were less dramatic than those observed for resting phagocytes. Exposure of medaka to elevated temperature for 14d tended (p<0.06) to reduce PMA-stimulated intracellular O(2)(-) production (compared to the time-matched control). Although exposure of fish for 14d to elevated temperature only slightly reduced stimulated extracellular O(2)(-) production, exposure for the same duration to Ni alone significantly depressed oxyradical production by kidney phagocytes (compared to the time-matched controls). Decreased plasma cortisol levels were observed in fish exposed for 7d to either an elevated water temperature or Ni (compared to the time-matched control); by 14d of exposure, no significant treatment-induced effects on cortisol levels were observed. These findings add to the growing body of literature seeking to determine what effects, if any, exposure to multiple aquatic pollution-induced effects have upon fish health and the health of impacted ecosystems.  相似文献   

15.
Several studies have suggested that exposure to hyperoxia causes lung injury through increased generation of reactive oxygen and nitrogen species. The present study was aimed to investigate the effects of hyperoxia exposure on protein nitration in lungs. Rats were exposed to hyperoxia (>95%) for 48, 60, and 72 h. Histopathological analysis showed a dramatic change in the severity of lung injury in terms of edema and hemorrhage between 48- and 60-h exposure times. Western blot for nitrotyrosine showed that several proteins with molecular masses of 29-66 kDa were nitrated in hyperoxic lung tissues. Immunohistochemical analyses indicate nitrotyrosine staining of alveolar epithelial and interstitial regions. Furthermore, immunoprecipitation followed by Western blot revealed the nitration of surfactant protein A and t1alpha, proteins specific for alveolar epithelial type II and type I cells, respectively. The increased myeloperoxidase (MPO) activity and total nitrite levels in bronchoalveolar lavage and lung tissue homogenates were observed in hyperoxic lungs. Neutrophils and macrophages isolated from the hyperoxia-exposed rats, when cocultured with a rat lung epithelial L2 cell line, caused a significant protein nitration in L2 cells. Inclusion of nitrite further increased the protein nitration. These studies suggest that protein nitration during hyperoxia may be mediated in part by MPO generated from activated phagocytic cells, and such protein modifications may contribute to hyperoxia-mediated lung injury.  相似文献   

16.
17.
Experiments were done to determine 1) whether the respiratory burst of superoxide anion (O2-) production in polymorphonuclear leukocytes (PMN) is triggered during antibody-dependent killing of tumor cells and 2) whether O2- production is essential for cytotoxicity. Three parameters of the respiratory burst (1-14C-glucose oxidation, oxygen consumption, and O2- release) were increased 2.5- to 7.3-fold during killing of antibody-primed tumor cells by human PMN. Added catalase and superoxide dismutase did not inhibit lysis, possibly because these enzymes were unable to diffuse into the inter-plasma-membrane space between killer and target cells. Evidence for an O2- requirement for cytotoxicity was the fact that concentrations of amobarbital or phenylbutazone sufficient to inhibit the cyanide-insensitive respiration of PMN also inhibited cytotoxicity. Also, hypoxic conditions inhibited cytotoxicity from 29 to 73%. The requirement for oxygen was most likely related to O2- generation and not mitochondrial respiration since cyanide and azide, which inhibit mitochondrial respiration, increased cytotoxicity.  相似文献   

18.
Induction of hypercapnia by breathing high concentrations of carbon dioxide (CO(2)) may have beneficial effects on the pulmonary circulation. We tested the hypothesis that exposure to CO(2) would protect against chronic pulmonary hypertension in newborn rats. Atmospheric CO(2) was maintained at <0.5% (normocapnia), 5.5%, or 10% during exposure from birth for 14 days to normoxia (21% O(2)) or moderate hypoxia (13% O(2)). Pulmonary vascular and hemodynamic abnormalities in animals exposed to chronic hypoxia included increased pulmonary arterial resistance, right ventricular hypertrophy and dysfunction, medial thickening of pulmonary resistance arteries, and distal arterial muscularization. Exposure to 10% CO(2) (but not to 5.5% CO(2)) significantly attenuated pulmonary vascular remodeling and increased pulmonary arterial resistance in hypoxia-exposed animals (P < 0.05), whereas both concentrations of CO(2) normalized right ventricular performance. Exposure to 10% CO(2) attenuated increased oxidant stress induced by hypoxia, as quantified by 8-isoprostane content in the lung, and prevented upregulation of endothelin-1, a critical mediator of pulmonary vascular remodeling. We conclude that hypercapnic acidosis has beneficial effects on pulmonary hypertension and vascular remodeling induced by chronic hypoxia, which we speculate derives from antioxidant properties of CO(2) on the lung and consequent modulating effects on the endothelin pathway.  相似文献   

19.
In previous reports from this study, measurements of pulmonary inflammation, bronchoalveolar lavage cell cytokine production and nuclear factor-kappa B activation, cytotoxic damage, and fibrosis were detailed. In this study, we investigated the temporal relationship between silica inhalation, nitric oxide (NO), and reactive oxygen species (ROS) production, and damage mediated by these radicals in the rat. Rats were exposed to a silica aerosol (15 mg/m(3) silica, 6 h/day, 5 days/wk) for 116 days. We report time-dependent changes in 1) activation of alveolar macrophages and concomitant production of NO and ROS, 2) immunohistochemical localization of inducible NO synthase and the NO-induced damage product nitrotyrosine, 3) bronchoalveolar lavage fluid NO(x) and superoxide dismutase concentrations, and 4) lung lipid peroxidation levels. The major observations made in this study are as follows: 1) NO and ROS production and resultant damage increased during silica exposure, and 2) the sites of inducible NO synthase activation and NO-mediated damage are associated anatomically with pathological lesions in the lungs.  相似文献   

20.
Abnormal dietary intake of macronutrients is implicated in the development of obesity and fatty liver disease. Steatosis develops in cultured hepatocytes exposed to medium containing either a high concentration of long chain free fatty acids (HFFA) or medium deficient in methionine and choline (MCD). This study examined the mitochondrial reactive oxygen species (ROS)-dependent regulation of the phosphoinositol (PI) 3-kinase pathway in steatosis induced by exposure of AML-12 mouse hepatocytes to MCD or HFFA medium. Exposure to either MCD or HFFA medium resulted in increased production of superoxide anions and H(2)O(2), transduction of the PI 3-kinase pathway and steatosis. Inhibition of PI 3-kinase with LY294002 prevented steatosis. Pharmacologically inhibiting electron transport chain complex III production of ROS prevented activation of PI 3-kinase during macronutrient perturbation, whereas pharmacologically promoting electron transport chain complex III ROS production activated PI 3-kinase independent of nutrient input. The data suggest that H(2)O(2) is the ROS species involved in signal transduction; promoting the rapid conversion of superoxide to H(2)O(2) does not inhibit PI 3-kinase pathway activation during nutrient perturbation, and exogenous H(2)O(2) activates it independent of nutrient input. In addition to transducing PI 3-kinase, the ROS-dependent signal cascade amplifies the PI 3-kinase signal by maintaining phosphatase and tensin homolog in its inactive phosphorylated state. Knockdown of phosphatase and tensin homolog by small interfering RNA independently activated the PI 3-kinase pathway. Our findings suggest a common path for response to altered nutrition involving mitochondrial ROS-dependent PI 3-kinase pathway regulation, leading to steatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号