首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saposin C is a sphingolipid activator protein of 8.5 kDa that activates lysosomal glucocerebrosidase. Previously, we synthesized and characterized a synthetic full-length human saposin C protein that displays 85% of the activity of the native saposin C. In this study we use shorter synthetic peptides derived from the saposin C sequence to map binding and activation sites. By determining the activity and kinetic constant (Kact) values of these peptides, we have identified two functional domains, each comprising a binding site adjacent to or partially overlapping with an activation site. Domains 1 and 2 are located within amino acid positions 6-34 and 41-60, respectively. The activation sites span residues 27-34 and 41-49, whereas binding sites encompass residues 6-27 and 45-60. Peptides containing the sequences of either domain displayed 90% of the activity of the full-length synthetic saposin C. Domain 2, however, bound to glucocerebrosidase by at least an order of magnitude more strongly than domain 1. Binding sites within these domains contain sequences that are excellent candidates for forming amphipathic helical structures. Competition assays demonstrated that the binding of one domain to glucocerebrosidase prevents binding of the other domain, and that saposin A and saposin C bind to the same sites on glucocerebrosidase. A model predicting a saposin C:glucocerebrosidase complex with a stoichiometry of 4:2, respectively, is presented.  相似文献   

2.
Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Vasoactive intestinal peptide (VIP) fragments generated by autoantibodies purified from the blood of two human beings were separated and sequenced. Based on the identity of these fragments, seven peptide bonds cleaved by the antibodies were identified. Six of the seven scissile bonds are clustered in the region of VIP spanning residues 14-22 and were cleaved by antibodies from both human subjects. The seventh scissile bond is located at residues 7-8 and was cleaved by antibodies from one of the subjects. The scissile bonds link amino acid residues with different size, charge, and hydrophobicity. The hydrolytic activity of the antibodies was selective in that they failed to hydrolyze polypeptides unrelated in sequence to VIP (insulin and atrial natriuretic peptide). These observations demonstrate substrate specific hydrolysis by naturally occurring antibodies and expand the range of peptide bonds hydrolyzed by these antibodies.  相似文献   

4.
d-Gluconamide, d-gluconyl hydrazide, and N-(6-aminohexyl)-d-gluconamide were prepared from d-glucono-1,5-lactone by treatment with ammonia, hydrazine, and 1,6-diaminohexane, respectively. These d-gluconamide derivatives were tested for their inhibitory action on human liver lysosomal glucocerebrosidase and human spleen neutral aryl β-glucosidase. Analogous d-galactonamide derivatives were evaluated for their inhibition of human spleen galactocerebrosidase and GM1-ganglioside β-galactosidase. d-Gluconyl hydrazide and d-gluconamide were effective inhibitors of the lysosomal glucocerebrosidase, attaining 50% inhibition at 5 and 12 mm, respectively. In contrast, N-(6-aminohexyl)-d-gluconamide did not inhibit the glucocerebrosidase. d-Gluconyl hydrazide was also the most effective inhibitor of human liver and spleen aryl β-glucosidase, 50% inhibition being achieved at 4 mm concentration (competitive inhibition, Ki = 0.4–0.9 mM). d-Galactonamide was the most effective inhibitor of spleen galactocerebrosidase; 4 mm d-galactonamide caused 50% inhibition of the enzyme activity (noncompetitive inhibition). N-(6-Aminohexyl)-d-galactonamide is a potent inhibitor (90% inhibition, 5 mm) of GM1-ganglioside β-galactosidase but is without effect on galactocerebrosidase. It has, therefore, the potential usefulness in distinguishing between two of the galactosphingolipid β-galactosidases.  相似文献   

5.
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase which cleaves the beta-glucosidic linkage of glucosylceramide, a normal intermediate in glycolipid metabolism. Glucocerebrosidase belongs to the clan GH-A of glycoside hydrolases, a large group of enzymes which function with retention of the anomeric configuration at the hydrolysis site. Accurate three-dimensional (3D) structure data for glucocerebrosidase should help to better understand the molecular bases of Gaucher disease. As such 3D structure data were not available, we used the two-dimensional hydrophobic cluster analysis (HCA) method to make structure predictions for the catalytic domains of clan GH-A glycoside hydrolases. We found that all the enzymes of clan GH-A may share a similar catalytic domain consisting of an (alpha/beta)8 barrel with the critical acid/base and nucleophile residues located at the C-terminal ends of strands beta 4 and beta 7, respectively. In the case of glucocerebrosidase, Glu 235 was predicted to be the putative acid/base catalyst whereas the nucleophile was located at Glu 340. Next, in order to obtain experimental evidence supporting these HCA-based predictions, we used retroviral vectors to express, in murine null cells, E235A and E340A mutant proteins, in which alanine residues unable to participate in the enzymatic reaction replace the presumed critical glutamic acid residues. Both mutants were found to be catalytically inactive although they were correctly folded/processed and sorted to the lysosome. Thus, Glu 235 and Glu 340 do indeed play key roles in the active site of human glucocerebrosidase as predicted by the HCA analysis. In a broader perspective, our work points out that bioinformatics approaches may be highly useful for generating structure-function predictions based on sequence-structure interrelationships, especially in the context of a rapid increase in protein sequence information through genome sequencing.  相似文献   

6.
A new fluorogenic compound--6-hexadecanoylamino-4-methyl-umbelliferyl-beta-D-gala cto pyranoside (HMGal), a substrate for human galactocerebroside beta-D-galactosidase (HG), has been synthesized. A method for determining the HG activity based on the use of HMGal as a fluorogenic substrate has been developed. The specificity of HMGal hydrolysis by HG has been demonstrated in experiments with enzyme preparations from human skin fibroblasts and leukocytes in normally and in hereditary glycolipidosis (GM1-gangliosidosis and Krabbe's disease). The use of HMGal permits to markedly increase the sensitivity of the method used for determining the HG activity.  相似文献   

7.
《Autophagy》2013,9(8):1042-1056
It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.  相似文献   

8.
Norman JM  Cohen GM  Bampton ET 《Autophagy》2010,6(8):1042-1056
It is becoming increasingly clear that there is crosstalk between the apoptotic and autophagic pathways, with autophagy helping to contribute to cell death by providing energy to allow the energy-requiring programmed cell death process to complete, as well as degrading cellular material in its own right. Recent evidence has suggested that Atg proteins can themselves be targets of caspases, providing potential regulation of autophagy as well as uncovering novel functions for fragments derived from Atg proteins. However, to date there has not been a detailed examination of which Atg proteins may be the targets of which death proteases. We show that the majority of human Atg (hAtg) proteins can be cleaved by calpain 1, which is activated in some apoptotic paradigms, as well as other forms of death. We also show that hAtg3 is cleaved by caspases-3, -6 and -8, hAtg6 (Beclin 1) is cleaved by caspase-3 and -6, while hAtg9, hAtg7 and the hAtg4 homologues can be cleaved by caspase-3. Cleavage of Beclin 1 was also seen in apoptosis of HeLa cells induced by staurosporine and TRAIL, along with cleavage of Atg3 and Atg4C. There were subtle effects of caspase inhibition on GFP-LC3 lipidation but more marked effects on the formation of GFP-LC3 puncta (a marker of autophagosome formation) and p62 degradation, indicating that caspase cleavage of autophagy-related proteins can affect the autophagic process. Notably we show that p62 is a target for caspase-6 and -8 cleavage.  相似文献   

9.
The amino acid sequence His-Pro-Phe as N-terminal residues 6-8 of the natural renin substrate, angiotensinogen, is conserved among species. We investigated whether this His-Pro-Phe motif functions as the determinant of the substrate specificity of renin. Mutant angiotensinogens in which the Ile-His-Pro-Phe-His-Leu sequence at positions 5-10 of wild-type angiotensinogen was replaced by either His-Pro-Phe-His-Leu-Leu or Ala-Ile-His-Pro-Phe-His were cleaved by renin at the C-terminal side of residues 9 and 11, respectively, while wild-type angiotensinogen was cleaved at residue 10. A triple Ala substitution for the His-Pro-Phe motif of angiotensinogen prevented its cleavage by renin. In contrast, triple Ala substitution for residues 9-11, including the natural site of cleavage by renin, allowed cleavage between the two Ala residues at positions 10 and 11. Furthermore, the 33-residue C-terminal peptide of human megsin, which carries a naturally occurring His-Pro-Phe sequence, was cleaved by renin at the C-terminal side of the His-Pro-Phe-Leu-Phe sequence. These results indicate that the His-Pro-Phe motif of angiotensinogen is a crucial determinant of the substrate specificity of renin. By binding to a corresponding pocket on renin, the His-Pro-Phe motif may act as a molecular anchor to recruit the scissile peptide bond to a favorable site for catalysis.  相似文献   

10.
The complete nucleotide sequence of the glucitol (gut) operon in Escherichia coli has been determined. The glucitol-specific Enzyme II and Enzyme III of the phosphoenolpyruvate:sugar phosphotransferase system as well as glucitol-6-phosphate dehydrogenase which are encoded by the gutA, gutB, and gutD genes of the gut operon, respectively, are predicted to consist of 506 (Mr = 54,018), 123 (Mr = 13,306), and 259 (Mr = 27,866) amino acyl residues, respectively. The hydropathic profile of the Enzyme IIgut revealed 7 or 8 long hydrophobic segments which may traverse the cell membrane as alpha-helices as well as 2 or 4 short strongly hydrophobic stretches which may traverse the membrane as beta-structure. The number of amino acyl residues in the sum of the molecular weights of the glucitol Enzyme II-III pair are nearly the same as those of the mannitol Enzyme II. The ratio of hydrophobic to hydrophilic amino acyl residues and the numbers of the hydrophobic segments are also nearly the same for both transport systems. However, no significant homology was found in the nucleotide or amino acyl sequences of the two systems. Glucitol-6-phosphate dehydrogenase was found to exhibit sequence homology with ribitol dehydrogenase. A repetitive extragenic palindromic sequence was found in the 3'-flanking region of the gutD gene, suggesting the presence of a gene downstream from the gutD gene.  相似文献   

11.
The importance of 3-O- and 6-O-sulfated glucosamine residues within the heparin octasaccharide iduronic acid(1)----N-acetylglucosamine 6-O-sulfate(2)----glucuronic acid(3)----N-sulfated glucosamine 3,6-di-O-sulfate(4)----iduronic acid 2-O-sulfate(5)----N-sulfated glucosamine 6-O-sulfate(6)----iduronic acid 2-O-sulfate(7)----anhydromannitol 6-O-sulfate(8) was determined by comparing with synthetic tetra- and penta-saccharides its ability to bind human antithrombin. The octasaccharide had an affinity for antithrombin of 1 X 10(-8) M (10.2 kcal/mol) measured by intrinsic fluorescence enhancement at 6 degrees C. The synthetic pentasaccharide, consisting of residues 2-6, had an affinity of 3 X 10(-8) M (9.6 kcal/mol). The same pentasaccharide, except lacking the 3-O-sulfate on residue 4, had an affinity of 5 X 10(-4) M (4.5 kcal/mol) measured by equilibrium dialysis. The tetrasaccharide, consisting of residues 2-5, bound antithrombin with an affinity of 5 X 10(-6) M (6.8 kcal/mol). The tetrasaccharide, consisting of residues 3-6, had an affinity of 5 X 10(-5) M (5.5 kcal/mol). Since the loss of either the 6-O-sulfated residue 2 or the 3-O-sulfate of residue 4 results in a 4-5 kcal/mol or a 40-50% loss in binding energy of the pentasaccharide, these two residues must be the major contributors to the binding and must be linked to the biologic activity of the octasaccharide.  相似文献   

12.
We have sequenced a cDNA for sex hormone-binding globulin (SHBG) isolated from a phage lambda gt11 human liver cDNA library. The library was screened with a radiolabeled rat androgen-binding protein (ABP) cDNA, and the abundance of SHBG cDNAs was 1 in 750,000 plaques examined. The largest human SHBG cDNA (1194 base-pairs) contained a reading frame for 381 amino acids. This comprised 8 amino acids of a signal peptide followed by 373 residues starting with the known NH2-terminal sequence of human SHBG, and ending with a termination codon. The predicted polypeptide Mr of SHBG is 40,509, and sites of attachment of one O-linked (residue 7) and two N-linked oligosaccharide (residues 351 and 367) chains were identified. Purified SHBG was photoaffinity-labeled with delta 6-[3H]testosterone and cleaved with trypsin. The labeled tryptic fragment was isolated by reverse-phase HPLC, and its NH2-terminal sequence was determined. The results suggest that a portion of the steroid-binding domain of SHBG is located between residue 296 and the 35 predominantly hydrophilic residues at the C-terminus of the protein.  相似文献   

13.
The low-Mr lipopolysaccharide produced by Nocardia otitidis-cavirum is composed of 6-O-methyl-D-glucose (11 mol), D-glucose (8 mol) and 3-O-methyl-D-glucose (1 mol). Glyceric acid was also found as a constituent. Methylation and periodate oxidation analyses suggested that the backbone was formed by (1----4)-linked glucose and O-methylglucose residues. Glucose (1 mol) and 6-O-methylglucose (1 mol) served as branching points. Acetic acid was the major acyl substituent esterifying glucose residues. The lipopolysaccharide was isolated from the cytoplasmic fraction. Several other Nocardia strains were examined; all possessed the same lipopolysaccharide in their extracts.  相似文献   

14.
Gal et al. ((1977) Clin. Chim. Acta 77, 53–59) reported the use of a new synthetic substrate, 2-hexadecanoylamino-4-nitrophenyl-β-D-galactopyranoside for the diagnosis of human globoid cell leukodystrophy. Assay of β-galactosidase in brain homogenates from normal, carrier, and globoid cell leukodystrophy-affected dogs utilizing this new substrate demonstrated overlapping activities. Instead of reflecting specific D-galactosyl-N-acylsphingosine galactohydrolase (EC 3.2.1.46), the 2-hexadecanoylamino-4-nitrophenyl-β-D-galactopyranoside β-galactosidase activity in canine brain is highly correlated with nonspecific 4-methylumbelliferyl β-galactosidase. Optimization of the 2-hexadecanoylamino-4-nitrophenyl-β-D-galactopyranoside assay system for canine brain and the use of varying concentrations of taurocholate or taurodeoxycholate in the assay mixture did not alter the lack of specificity. These results indicate a significant difference in the nature of the underlying defect in galactosylceramide β-galactosidase in canine globoid cell leukodystrophy compared to human globoid cell leukodystrophy.  相似文献   

15.
Extracts of human spleen contain two immunologically distinguishable forms of glucocerebrosidase: form I is precipitable by polyclonal or monoclonal anti-(placental glucocerebrosidase) antibodies, whereas form II is not [Aerts, J. M. F. G., Donker-Koopman, W. E., Van der Vliet, M. F. K., Jonsson, L. M. V., Ginns, E. I., Murray, G. J., Barranger, J. A., Tager, J. M. & Schram, A. W. (1985) Eur. J. Biochem. 150, 565-574]. The proportion of form II glucocerebrosidase was high in extracts of spleen, liver and kidney and low in extracts of brain, placenta and fibroblasts. Furthermore, the proportion of form II enzyme was higher in a detergent-free aqueous extract of spleen than in a Triton X-100 extract of total spleen or splenic membranes. When form II glucocerebrosidase in a splenic extract was separated from form I enzyme by immunoaffinity chromatography and stored at 4 degrees C, a gradual conversion to form I enzyme occurred. The conversion was almost immediate if 30% (v/v) ethylene glycol was present. In the denatured state both forms of glucocerebrosidase reacted with anti-(placental glucocerebrosidase) antibodies. Form I glucocerebrosidase was stimulated by sodium taurocholate or sphingolipid-activator protein 2 (SAP-2), whereas form II enzyme exhibited maximal activity in the absence of the effectors. The pH activity profile of form II glucocerebrosidase was almost identical to that of form I enzyme in the presence of SAP-2. In the native state, form I glucocerebrosidase had a molecular mass of 60 kDa whereas that of form II glucocerebrosidase was about 200 kDa. After gel-permeation high-performance liquid chromatography of splenic extracts, the fractions with form II glucocerebrosidase contained material cross-reacting with both anti-(placental glucocerebrosidase) and anti-(SAP-2) antibodies. Preincubation of form I glucocerebrosidase with SAP-2 at pH 4.5 led to masking of the epitope on glucocerebrosidase reacting with monoclonal anti-(placental glucocerebrosidase) antibody 2C7. Furthermore, preincubation of form I glucocerebrosidase with monoclonal antibody 2C7 prevented activation of the enzyme by SAP-2. We propose that form I glucocerebrosidase is a monomeric form of the enzyme, whereas form II glucocerebrosidase is a high-Mr complex of the enzyme in association with sphingolipid-activator protein 2.  相似文献   

16.
The epitope of monoclonal antibody (mAb 4A), which recognizes the alpha subunit of the rod G protein, Gt, has been suggested to be both at the carboxyl terminus (Deretic, D., and Hamm, H.E. (1987) J. Biol. Chem. 262, 10839-10847) and the amino terminus (Navon, S.E., and Fung, B.K.-K. (1988) J. Biol. Chem. 263, 489-496) of the molecule. To characterize further the mAb 4A binding site on alpha t and to resolve the discrepancy between these results limited proteolytic digestion of Gt or alpha t using four proteases with different substrate specificities has been performed. Endoproteinase Arg-C, which cleaves the peptide bond at the carboxylic side of arginine residues, cleaved the majority of alpha t into two fragments of 34 and 5 kDa. The alpha t 34-kDa fragment in the holoprotein, but not alpha t-guanosine 5'-O-(3-thiotriphosphate), was converted further to a 23-kDa fragment. A small fraction of alpha t-GDP was cleaved into 23- and 15-kDa fragments. Endoproteinase Lys-C, which selectively cleaves at lysine residues, progressively removed 17 and then 8 residues from the amino terminus, forming 38- and 36-kDa fragments. Staphylococcus aureus V8 protease is known to remove 21 amino acid residues from the amino-terminal region of alpha t, with the formation of a 38-kDa fragment. L-1-Tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin cleaved alpha t progressively into fragments of known amino acid sequences (38, then 32 and 5, then 21 and 12 kDa) and a transient 34 kDa fragment. The binding of mAb 4A to proteolytic fragments was analyzed by Western blot and immunoprecipitation. The major fragments recognized by mAb 4A on Western blots were the 34- and 23-kDa fragments obtained by endoproteinase Arg-C and tryptic digestion. Under conditions that allowed sequencing of the 15- and 5-kDa fragments neither the 34- nor the 23-kDa fragments could be sequenced by Edman degradation, indicating that they contained a blocked amino terminus. The smallest fragment that retained mAb 4A binding was the 23-kDa fragment containing Met1 to Arg204. Thus the main portion of the mAb 4A antigenic site was located within this fragment, indicating that the carboxyl-terminal residues from Lys205 to Phe350 were not required for recognition by the antibody. Additionally, the antibody did not bind the 38- and 36-kDa or other fragments containing the carboxyl terminus, showing that the amino-terminal residues from Met1 to Lys17 were essential for antibody binding to alpha t.  相似文献   

17.
A membrane-bound metallo-endopeptidase that hydrolyzes human parathyroid hormone (1-84) and reduced hen egg lysozyme between hydrophilic amino acid residues was isolated from rat kidney [Yamaguchi et al. (1991) Eur. J. Biochem. 200, 563-571]. In this study, the hydrolyses of various peptide hormones and neuropeptides by the metallo-endopeptidase were examined using an automated gas-phase protein sequencer. The purified enzyme hydrolyzed the oxidized insulin B chain and substance P most rapidly, followed by big endothelin 1, neurotensin, angiotensin 1, endothelin 1, rat alpha-atrial natriuretic peptide and bradykinin, in this order. The enzyme mainly cleaved these peptides at bonds involving a hydrophilic amino acid residue. However, it cleaved bonds between less hydrophilic amino acid pairs in several short peptides, e.g. at the His5-Leu6 bond in oxidized insulin B chain, the Ile28-Val29 bond in big endothelin-1 and the Ile5-His6 and Phe8-His9 bonds in angiotensin 1. The enzyme cleavage sites of oxidized insulin B chain and angiotensin 1 were different from the reported sites cleaved by meprin and by endopeptidase 2, respectively. Kinetic determination of bradykinin hydrolysis by the purified enzyme yielded values of Km = 18.1 microM and kcat = 0.473 s-1, giving a ratio of kcat/Km = 2.62 x 10(4) s-1.M-1. The Km value was about 20-fold lower than that reported for meprin and endopeptidase 2. These results indicate that the membrane-bound metallo-endopeptidase from rat kidney is distinguished from meprin and endopeptidase 2 in its substrate specificity and is not parathyroid hormone specific, but has potential capacities to inactivate various biologically active peptide hormones and neuropeptides in vivo.  相似文献   

18.
K H Mayo  J H Prestegard 《Biochemistry》1985,24(26):7834-7838
Acylated acyl carrier proteins (ACPs) with acyl chain lengths of 2, 4, 6, 8, and 10 carbons were investigated by NMR and nuclear Overhauser methods at 500 MHz. Chemical shift changes of downfield aromatic and upfield, ring-current-shifted, isoleucine proton resonances monotonically vary as a function of acyl chain length with the most prominent shifts occurring with chain lengths between four and six carbons. Chemical shifts are largest for one of the two phenylalanines; however, substantial shifts do exist for Tyr-71, His-75, and two isoleucines. Since these residues are distributed throughout the molecule, their associated resonance chemical shifts are most probably explained by an induced conformational change. Comparative NOE measurements on reduced ACP (ACP-SH) and ACP-S-C8 suggest, however, that these induced conformational changes are small except for around one of the phenylalanines. A tertiary structural model for acyl-ACP consistent with our previous model for ACP-SH [Mayo, K. H., Tyrell, P. M., & Prestegard, J. H. (1983) Biochemistry 22, 4485-4493] is presented.  相似文献   

19.
Apolipoprotein A-I (apoA-I) is the major protein associated with high density lipoprotein (HDL), and its plasma levels have been correlated with protection against atherosclerosis. Unfortunately, the structural basis of this phenomenon is not fully understood. Over 25 years of study have produced two general models of apoA-I structure in discoidal HDL complexes. The "belt" model states that the amphipathic helices of apoA-I are aligned perpendicular to the acyl chains of the lipid bilayer, whereas the "picket fence" model argues that the helices are aligned parallel with the acyl chains. To distinguish between the two models, various single tryptophan mutants of apoA-I were analyzed in reconstituted, discoidal HDL particles composed of phospholipids containing nitroxide spin labels at various positions along the acyl chain. We have previously used this technique to show that the orientation of helix 4 of apoA-I is most consistent with the belt model. In this study, we performed additional control experiments on helix 4, and we extended the results by performing the same analysis on the remaining 22-mer helices (helices 1, 2, 5, 6, 7, 8, and 10) of human apoA-I. For each helix, two different mutants were produced that each contained a probe Trp occurring two helical turns apart. In the belt model, the two Trp residues in each helix should exhibit maximal quenching at the same nitroxide group position on the lipid acyl chains. For the picket fence model, maximal quenching should occur at two different levels in the bilayer. The results show that the majority of the helices are in an orientation that is consistent with a belt model, because most Trp residues localized to a position about 5 A from the center of the bilayer. This study corroborates a belt hypothesis for the majority of the helices of apoA-I in phospholipid discs.  相似文献   

20.
A novel chromatographic immunoaffinity procedure is described for the purification of Form I glucocerebrosidase (see J. M. F. G. Aerts, W. E. Donker-Koopman, M. K. Van der Vliet, L. M. V. Jonsson, E. I. Ginns, G. J. Murray, J. A. Barranger, J. M. Tager, and A. W. Schram, 1985, Eur. J. Biochem. 150, 565-574) from extracts of human tissues. The affinity support consists of two monoclonal anti-(glucocerebrosidase) antibodies immobilized by covalent coupling to CNBr-activated Sepharose 4B. After adsorption of the enzyme from a crude detergent extract, the column is washed successively with 30% ethylene glycol in citrate buffer (pH 6), 1% Triton X-100 in citrate phosphate buffer (pH 5.2), and 50% ethylene glycol in citrate buffer. The enzyme is eluted with 90% ethylene glycol in citrate buffer. After dilution to 30% ethylene glycol, the immunoaffinity purification is repeated. The procedure can be completed within less than 18 h. The final preparations have a high specific activity (50 U/mg protein (n = 4) for the placental enzyme) and contain no detectable impurities after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The yield is high (81 +/- 8% for the placental enzyme). The immunoaffinity column has a high capacity, can be regenerated easily, and can be utilized repeatedly without loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号