首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The impact of waste discharge from Zoo abattoir, Port Harcourt, on the environmental quality of Woji Creek was studied from April 2001 to March 2002 using physicochemistry and diversity of benthic animals as indicators. Priority physicochemical parameters (total suspended solid, dissolved oxygen and biochemical oxygen demand) indicated high organic enrichment, chiefly due to inputs of bloody effluent. The burning of animal skin with discarded car tyres to produce kpomo, a common local soup component, contributes to the creek's quality alterations. Ironically, diversity of zoobenthos was highest at the area receiving the abattoir effluents compared to areas upstream and downstream from that point. Possible explanations are provided for the inverted diversity trend using the Hutcheson Index, which indicated significant diversities in invertebrate species amongst the three sample sites. The inefficiency of ecosystem quality evaluations using isolated single indices is also discussed.  相似文献   

2.
T. Frisk 《Hydrobiologia》1982,86(1-2):133-139
A simple water quality model for Lake Haukivesi, heavily loaded by pulp and paper mill effluents, has been developed. The main purpose of the model is to predict the concentration of dissolved oxygen in the hypolimnion. The lake is divided into seven sub-basins, and also into epilimnion and hypolimnion. Transfers between sub-basins are calculated using water balance equations. The state variables of the model are dissolved oxygen concentration, biochemical oxygen demand, phytoplankton biomass, and total phosphorus concentration. The effect of temperature on reaction rate coefficients has been taken into account. Temperature is calculated in the model using a second degree polynomial function. The processes affecting hypolimnetic oxygen consumption are BOD decay, decomposition of phytoplankton, benthic oxygen demand, and decomposition of slowly decaying organic matter.  相似文献   

3.
Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs) in Lake Chaohu and can therefore serve as indicators of the lake's health and assist in the assessment of OCPs risks to human health. OCP levels in eight species of aquatic biota were measured using GC–MS, and the relationships between the biota and OCP levels in the water and suspended solids were studied. DDTs pose potential human health risks and were the predominant OCP components found in the aquatic biota. DDT had the highest mean bioaccumulation factor (BAF) and biota suspended solids accumulation factor (BSSAF) of all of the studied OCP components. The food web magnification factors (FWMF) for p, p′-DDT were greater than 1, implying that biomagnification occurred. This finding indicates that DDTs still pose a serious threat to the ecosystem and human health in Lake Chaohu, even though the agricultural application of DDT powder has been officially banned since 1983. There were significant positive relationships between OCPs levels in Culter erythropterus and those in both water and suspended solids, as well as between OCPs levels in Protosalanx hyalocranius and those in suspended solids. This finding suggests that C. erythropterus and P. hyalocranius are the most sensitive aquatic biota to OCPs and may serve as the most effective bioindicators for monitoring OCP contamination in the water and suspended solids of Lake Chaohu. Megalobrama amblycephala, which contained the highest wet weight mean OCP concentration, is the most sensitive OCP indicator and can be used to assess the human carcinogenic risk of OCPs in Lake Chaohu.  相似文献   

4.
Low dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment oxygen flux (SOF) at selected tidal creek sites monthly over a 1-year period. Ancillary physical, chemical and biological data were collected to identify factors related to oxygen loss. BOD5 rates ranged from 0.0 mg l?1 to 7.6 mg l?1 and were correlated positively with organic suspended solids, total suspended solids, chlorophyll a concentrations, temperature, and dissolved oxygen, and negatively with pH and nitrate + nitrite. SOF rates ranged from 0.0 to 9.3 g O2 m?2 d?1, and were positively correlated with temperature, chlorophyll a, and total suspended solids, but negatively with dissolved oxygen. Both forms of oxygen uptake were seasonally dependent, with BOD5 elevated in spring and summer and SOF elevated in summer and fall. Average oxygen loss to sediments was greater and more variable than oxygen loss in the water column. Oxygen deficits at three of five locations were significantly related to BOD5 and SOF, but not at two sites where ground water discharges were observed. Correlation and principal component analyses suggested that BOD5 and SOF responded to somewhat different suites of environmental variables. BOD5 was driven by a set of parameters linked to warm season storm water inputs that stimulated organic seston loads, especially chlorophyll a, while SOF behaved less strongly so. Runoff processes that increase loads of organic material and nutrients and ground water discharges low in dissolved oxygen contribute to occurrences of low dissolved oxygen in tidal creeks.  相似文献   

5.
Bioremediation of paper and pulp mill effluents   总被引:1,自引:0,他引:1  
Pulp and paper mill effluents pollute water, air and soil, causing a major threat to the environment. Several methods have been attempted by various researchers throughout the world for the removal of colour from pulp and paper mill effluents. The biological colour removal process uses several classes of microorganisms--bacteria, algae and fungi--to degrade the polymeric lignin derived chromophoric material. White rot fungi such as Phanerochaete chrysosporium, Corius versicolor, Trametes versicolor etc., are efficient in decolourizing paper and pulp mill effluents. Gliocladium virens, a saprophytic soil fungus decolourised paper and pulp mill effluents by 42% due to the production of hemicellulase, lignin peroxidase, manganese peroxidase and laccase.  相似文献   

6.
Industrial effluents from jute, paper, pulp mills and sewage from households are regularly discharged into the Hooghly River. It generates a potential risk for both humans and animals of the area concerned. In the present study, water quality of the Hooghly River passing by the site of a growing township (Naihati, North 24 Parganas, West Bengal, India) was assessed throughout the year 2010 on the basis of the data collected on the physicochemical and microbiological parameters. The water samples collected on each month revealed the presence of higher amount of coliform bacteria, Streptococcus sp. and Escherichia coli, than the standard limit. Different physicochemical parameters like chemical oxygen demand, biological oxygen demand, dissolved oxygen (DO), total suspended solids, total dissolved solids (TDS), total hardness, alkalinity, chlorinity, nitrate and nitrite of the water at the sampling sites were found to be considerably higher than the levels standardized by WHO (2006). It was found that the relative abundance of Streptococcus and E. coli was influenced by two independent variables (water quality parameters), namely, DO and TDS. The abundance of coliform bacteria in the water sample warrants the adoption of proper measures to reduce the pollution level at the point source on way of scientific disposal of industrial effluents.  相似文献   

7.
Hyperconcentrated benthic layers, which form during neap tides, recruit much of the fine sediment population of the turbidity maximum of a hypertidal estuary. Measurements of tidal amplitude and suspended solids concentration reveal that resuspension of the hyperconcentrated layers occurs between three and eight tides after neap tides rather than during spring tides (12 to 15 tides after neaps). During these resuspension events, dissolved oxygen levels are reduced but recover by spring tides. Peak solids concentrations and critically depressed dissolved oxygen levels are out of phase with tidal current amplitude. Thus observations close to neap and spring tides do not necessaraly capture the extremes of the envelope of water quality conditions.  相似文献   

8.
The bioaccumulation of chromium from retan chrome liquor by Spirulina fusiformis was investigated under laboratory as well as field conditions. At the optimal conditions, metal ion uptake increased with initial metal ion concentration up to 300 mg/l. The effect on various physico-chemical parameters like total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), chlorides, sulphates, phenols, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) and biochemical studies related to biomass, chlorophyll-a and protein were also carried out. The present study indicates that S. fusiformis is very effective in removal of chromium (93–99%) besides removing other toxicants from retan chrome liquor. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and FTIR studies indicate the interaction/complexation between Cr and alga. The mechanism involved in bioaccumulation of chromium is also discussed. The process when upgraded can be applied for detoxification of tannery effluents.  相似文献   

9.
Bleached kraft mill effluents (BKME) contain both nutrients(nitrogen and phosphorus) and contaminants that can have a stimulatoryor inhibitory effect on riverine food webs. For the Northern RiverBasins Study (NRBS), separation of the effects of nutrients andcontaminants in BKME was an important issue because field biomonitoringwas unable to isolate these impacts. We addressed this problem by usingriverside mesocosm experiments, along with field observations, todetermine the effects of BKME on benthic food webs of the upperAthabasca River near Hinton, Alberta, Canada. Response variablesincluded periphyton biomass, benthic insect density and composition, andthe biomass of abundant invertebrates (i.e., caddisfly, mayfly andstonefly taxa). Experiments were conducted during autumn when nutrientenhancement was hypothesized to increase autochthonous primaryproduction as a result of low river discharge and high water clarity.Treatments included reference river water, 1% BKMEconcentrations, and nutrients (nitrogen plus phosphorus) equivalent tothe 1% BKME treatment. Although pulp mill effluents can inducesublethal toxicity in benthic biota, BKME concentrations equivalent tolevels in the Athabasca River did not cause measurable toxicity.Relative to reference water treatments, BKME-associated increases inavailable phosphorus produced enrichment effects including increases inperiphyton and insect biomass, and invertebrate abundance. Insect familyrichness was not affected by the treatments. The development andapplication of a field-based artificial stream system for the NRBSimproved our mechanistic understanding of the effects of BKME on benthicbiota of nutrient and contaminant stressors. By combining artificialstream results with field observations, we were also able to link thismechanistic understanding of stressor effects directly to impacts in theriver. We conclude that the response to BKME in the Peace-AthabascaBasin is largely one of nutrient enrichment rather than that oftoxicity.  相似文献   

10.
Casey  H.  Farr  I. S. 《Hydrobiologia》1982,91(1):447-462
In rivers, variations in concentrations of many dissolved nutrients occur during spates. Increases are usually attributed to concentrated point or non-point inputs, and decreases to dilution associated with rainfall. Increased discharge disturbs sediments and benthic communities, but the effects of such disturbance on nutrient levels are difficult to isolate. Measurements of nutrient levels over three artificial spates revealed that substantial variations in dissolved organic carbon, dissolved phosphate, silicate, nitrate, and potassium levels could result from increased discharge in the absence of allochthonous inputs. Variations were closely related to peaks in suspended solids concentration or water height. Increases in biochemical oxygen demand and suspended bacteria also occurred. Variations in phosphate and silicate could be accounted for by a balance between release of ‘sediment interstitial water’ and exchange processes involving suspended and freshly exposed sediment. An increase in nitrate, during one spate, was probably due to a reduction in the effect of benthic denitrification. Small peaks in dissolved organic matter concentration were detected over each spate. We propose that within-stream disturbance is a factor which may contribute to variations in dissolved nutrient concentration during the rising hydrograph in natural spates.  相似文献   

11.
This study describes the use of a technique developed to assess environmental quality in a municipality. The Environmental Quality Index (EQI) is a tool that can aid land-use planning, permitting a maximum understanding of the implications for the ecology of an area. A matrix shows the status of each of a series of environmental parameters at each time that an EQI is formulated. Time series analysis is used to quantify environmental impacts on a discrete community's ecosystem: this process allows the graphing of the dynamics of a changing natural resource. Thus, correlation of abiotic changes can be made with changes in biota: for instance, a correlation between proximity to effluents from sewage treatment plants and fish and aquatic plant species diversity is useful information in the managcrnent of fishery resources. Similarly, knowledge of the rate of shift from lotic to lentic waters, due to increased impounding, and its relationship to aquatic plant species diversity is important for land-use planners who are sensitive to environmental considerations. Decisions made with environmental preservation in mind will help to maintain high quality aquatic habitats.  相似文献   

12.
An assessment of biological impairment in the Little Floyd River (Iowa, USA) was based on evidence of three characteristics of causation: co-occurrence, preceding causation, and sufficiency. Evidence of the physical interaction of the probable causes and the biota, resulting alterations to the biota, as well as the time order of the cause and the effect were consistent within the assessment, but the evidence for these causal characteristics did not discriminate among probable causes or other causes. Deposited sediment, low dissolved oxygen, heat stress, and ammonia toxicity are the probable causes of impaired biological condition in the Little Floyd River compared with other rivers in the ecoregion. Less likely causes are suspended sediment, altered basal food resources, and flow alteration. Very unlikely causes are pH shifts, total dissolved solids, Cyprinus carpio (an invasive species), metal toxicity, and pesticides. Data were insufficient to assess salinity or other toxicants. The assessment was used to develop a recovery plan for the stream. This assessment demonstrates that, even when there are many candidate causes and uncertainties are substantial, the probable causes of biological impairments can be determined with enough certainty to inform decision-making to address environmental problems.  相似文献   

13.
Demand for wastewater treatment facilities will increase as Jordan's population grows. In addition, currently available systems of treatment desperately need upgrades in capacity or supplementary systems; especially in the Amman-Zarqa region. Overall; based on the current wastewater flow rates; approximately 85% of the collected sewerage is treated in stabilization ponds, 10% in trickling filters, and 5% in activated sludge systems. This study was carried out to analyze and identify the properties of Jordanian wastewater; compare it to the common characteristics internationally known; and couple that with a proposal of an appropriate treatment technology. Five treatment plants were selected to achieve the objectives of this study; the flow rate of which constitutes approximately 80% of the total treated wastewater in Jordan, based on the design capacity. The study concluded that the wastewater generated in Jordan is classified as strong in terms of total dissolved solids content, total suspended solids content, and chemical and biochemical oxygen demands (COD and BOD). The efficiency of the selected technologies in removing dissolved solids from wastewater was low while it was reasonably high in terms of suspended solids removal. The technology achieving highest percent removals of BOD and solids was that of activated sludge and its modifications. Based on the factors considered in evaluating and selecting unit operations and processes, the activated sludge and its modifications are probably the process technology that should be used in treating Jordanian domestic wastewaters.  相似文献   

14.
1. Dams, ubiquitous features in many lotic ecosystems, are believed to have many broad‐ranging and predominantly negative effects on stream biota. Whereas the impacts of larger dams are well studied, few studies have quantified effects of small dams on streams. 2. Recent surveys found numerous locations where mussels were abundant and larger in reaches immediately downstream from small dams. We examined mussel shell growth and resource conditions in Sandy Creek, a small (third‐order) tributary of the Tallapoosa River in east‐central Alabama (U.S.A.), to determine whether larger populations and individuals result from more rapid growth or longer lifespans of mussels downstream from the dam. 3. Growth rates for populations occurring immediately downstream from the dam (mill reach), c. 5 km downstream from the dam (downstream reach) and upstream from the impoundment (upstream reach) were compared with environmental conditions (seasonal measures of nutrient concentrations and water chemistry) and food availability [total suspended solids (TSS)]. Water temperature was continuously monitored using data loggers. 4. Analysis of length‐at‐age data using multiple growth models found that mill reach mussels grew faster than both up‐ and downstream populations. This dam appears to substantially increase water temperatures and may extend the shell growth period in the mill reach. TSS quantity varied seasonally between sites but was generally highest in the impoundment and mill reach during spring and autumn. TSS quality was highest in the upstream reach from spring through autumn but was highest in the impoundment and mill reach during winter. 5. Our data suggest that some small impoundments enhance conditions for freshwater mussel growth in downstream reaches. However, we do not know how far downstream this subsidy extends or how different species respond to mill dam augmentation. Regardless, mounting evidence suggests that this phenomenon is geographically and taxonomically widespread in eastern North America. Heretofore, undocumented positive effects of small dams suggest that some older dams may warrant protection or restoration if downstream reaches support imperilled mussel populations. Further, some small dams may prove useful conservation tools for natural resource managers attempting to identify sites for mussel culture facilities or translocation refugia.  相似文献   

15.
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.  相似文献   

16.
The use of surfactants in households and industries is inevitable and so is their discharge into the environment, especially into the water bodies as effluents. Being surface-active agents, their utilization is mostly seen in soaps, detergents, personal care products, emulsifiers, wetting agents, etc. Anionic surfactants are the most used class. These surfactants are responsible for the foam and froth in the water bodies and cause potential adverse effects to both biotic and abiotic components of the ecosystem. Surfactants are capable of penetrating the cell membrane and thus cause toxicity to living organisms. Accumulation of these compounds has been known to cause significant gill damage and loss of sight in fish. Alteration of physiological and biochemical parameters of water decreases the amount of dissolved oxygen and thus affecting the entire ecosystem. Microbes utilizing surfactants as substrates for energy form the basis of the biodegradation of these compounds. The main organisms for surfactant biodegradation, both in sewage and natural waters, are bacteria. Several Pseudomonas and Bacillus spp. have shown efficient degradation of anionic surfactants namely: sodium dodecyl sulphate (SDS), linear alkylbenzene sulphonate (LAS), sodium dodecylbenzenesulphonate (SDBS). Also, several microbial consortia constituting Alcaligenes spp., Citrobacter spp., etc. have shown efficacy in the degradation of surfactants. The biodegradation efficiency studies of these microbes/microbial consortia would be of immense help in formulating better solutions for the bioremediation of surfactants and help to reduce their potential environmental hazards.  相似文献   

17.
18.
Invasion by common carp (Cyprinus carpio) and red swamp crayfish (Procambarus clarkii) in shallow lakes have been followed by stable-state changes from a macrophyte-dominated clear water state to a phytoplankton-dominated turbid water state. Both invasive carp and crayfish are, therefore, possible drivers for catastrophic regime shifts. Despite these two species having been introduced into ecosystems world-wide, their relative significance on regime shifts remains largely unexplored. We compared the ecological impacts of carp and crayfish on submerged macrophytes, water quality, phytoplankton, nutrient dynamics, zooplankton and benthic macroinvertebrates by combining an enclosure experiment and a meta-analysis. The experiment was designed to examine how water quality and biological variables responded to increasing carp or crayfish biomass. We found that even at a low biomass, carp had large and positive impacts on suspended solids, phytoplankton and nutrients and negative impacts on benthic macroinvertebrates. In contrast, crayfish had a strong negative impact on submerged macrophytes. The impacts of crayfish on macrophytes were significantly greater than those of carp. The meta-analysis showed that both carp and crayfish have significant effects on submerged macrophytes, phytoplankton, nutrient dynamics and benthic macroinvertebrates, while zooplankton are affected by carp but not crayfish. It also indicated that crayfish have significantly greater impacts on macrophytes relative to carp. Overall, the meta-analysis largely supported the results of the experiment. Taken as a whole, our results show that both carp and crayfish have profound effects on community composition and ecosystem processes through combined consequences of bioturbation, excretion, consumption and non-consumptive destruction. However, key variables (e.g. macrophytes) relating to stable-state changes responded differently to increasing carp or crayfish biomass, indicating that they have differential ecosystem impacts.  相似文献   

19.
The Linggi River Basin is one of the most polluted river basins in Malaysia and drains an area of about 1,399km2 in the state of Negri Sembilan. An extensive multidisciplinary research was carried out to develop a predictive mathematical model to manage the Linggi River basin effectively. This paper reports only the morphometry and other physical environmental conditions of the Linggi River Basin which was carried out between January, 1983 and January, 1984. Topography, vegetation, landuse pattern, general geology and lithology, population distribution and water usage by the people are discussed. In addition, physical information such as air and water temperatures, precipitation, sunshine, discharge, suspended solids and dissolved solids data collected before and after the study period are discussed in detail.  相似文献   

20.
To determine whether existing dissolved oxygen (DO) regulationswere adequate to protect riverine biota, the Northern River Basins Studyrequired a research and assessment program to establish the effect ofpulp mill and municipal sewage discharges on under-ice DO concentrationsand aquatic biota in the Athabasca, Wapiti and Smoky rivers of northernAlberta, Canada. Analysis of monitoring data collected over >30 yearsshowed that pulp mill and municipal effluents have caused sags in DObelow their discharges and contributed to an increased rate of declinein DO over 10s of kilometers in the Wapiti-Smoky rivers or 100s ofkilometers in the Athabasca River. To permit forecasting of DO declinesin response to changes in river discharge or effluent biochemical oxygendemand (BOD), a one-dimensional steady-state river water quality modelwas implemented that successfully (r2 =0.74–0.92) predicted DO concentrations over an 820 km reach of theAthabasca River for the 1990–1994 winters. Experiments on nativefish and benthic macroinvertebrate species showed that exposure to lowDO and low temperatures (2–3°C) caused delays in hatch ofmountain whitefish eggs (at 6.5 mg/L DO), reduced mass of bull troutalevins post-hatch (at 5.0 mg/L DO), extended the spawning period ofburbot (at 6.0 mg/L DO), and depressed feeding rates and loweredsurvival of the mayfly Baetis tricaudatus (at 5 mg/L DO).As a result of recommendations from this integrated program of rivermonitoring, modelling and experimentation, effluent BOD loading has beenreduced to the Athabasca and Wapiti rivers and the provincial DOguideline for protection of aquatic life has been increased from 5.0 to6.5 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号