首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have sequenced the 3′ and 5′ untranslated regions of β-globin mRNAs from cebus monkey, rhesus monkey and chimpanzee. A comparison with the corresponding human sequences reveals that the rate of sequence divergence among the higher primates is the same in the 3′ and 5′ noncoding regions and that this rate is several times lower than the rate for silent substitutions in the coding regions. In addition, the rate of sequence divergence in the 3′ untranslated region of the primate β-globin mRNA is several times lower than the rate calculated for this region from other comparisons. The low rate of sequence divergence in the noncoding 3′ end of the primate β-globin mRNAs may indicate a specialized and significant function for this region in the higher primates.  相似文献   

2.
Cytochrome c oxidase subunit II (COII), encoded by the mitochondrial genome, exhibits one of the most heterogeneous rates of amino acid replacement among placental mammals. Moreover, it has been demonstrated that cytochrome c oxidase has undergone a structural change in higher primates which has altered its physical interaction with cytochrome c. We collected a large data set of COII sequences from several orders of mammals with emphasis on primates, rodents, and artiodactyls. Using phylogenetic hypotheses based on data independent of the COII gene, we demonstrated that an increased number of amino acid replacements are concentrated among higher primates. Incorporating approximate divergence dates derived from the fossil record, we find that most of the change occurred independently along the New World monkey lineage and in a rapid burst before apes and Old World monkeys diverged. There is some evidence that Old World monkeys have undergone a faster rate of nonsynonymous substitution than have apes. Rates of substitution at four-fold degenerate sites in primates are relatively homogeneous, indicating that the rate heterogeneity is restricted to nondegenerate sites. Excluding the rate acceleration mentioned above, primates, rodents, and artiodactyls have remarkably similar nonsynonymous replacement rates. A different pattern is observed for transversions at four-fold degenerate sites, for which rodents exhibit a higher rate of replacement than do primates and artiodactyls. Finally, we hypothesize specific amino acid replacements which may account for much of the structural difference in cytochrome c oxidase between higher primates and other mammals.   相似文献   

3.
Primate evolution of the alpha-globin gene cluster and its Alu-like repeats   总被引:8,自引:0,他引:8  
The arrangement of alpha-globin genes in Old World and New World monkeys and a prosimian, galago, has been determined by restriction mapping. Recombinant DNAs containing galago and Old World monkey alpha-globin genes have been isolated and subjected to a partial sequence determination for comparison to alpha-globin genes in human, chimpanzee and non-primate mammals. The results of this extensive structural analysis are relevant to several topics concerning the evolution of primate alpha-globin genes and Alu family repeats. All orders of higher primates (i.e. Old and New World monkeys, chimpanzee and human) have the same arrangement of alpha-globin genes. In contrast, the arrangement and correction of galago alpha-globin genes differ from those of higher primates, but are similar to those of non-primate mammals. The 5' and 3'-flanking regions of the human alpha 1 gene are orthologous to the corresponding region in galago, identifying the human alpha 2 gene as the more recently duplicated gene. The human psi alpha 1 gene is found to be inactivated after divergence of the human and galago lineages but prior to the divergence of human and monkey. Orthologous Alu family members in human and monkey DNAs indicate that the dispersion of some Alu repeats occurred prior to the divergence of these lineages. However, the Alu-like repeats of prosimian and higher primates result from entirely independent events giving rise to different repeat elements inserted at distinct genomic positions.  相似文献   

4.
5.
We describe the cloning of double-stranded cDNA synthesized from lactating human mammary gland total poly(A)-containing RNA, into the EcoRI site of the plasmid pAT153. Nine recombinants were shown to contain alpha-lactalbumin cDNA sequences as determined by positive hybridisation translation of complementary RNA. Restriction enzyme maps were determined for six of these. Alignment of the restriction map with the known amino acid sequence of human alpha-lactalbumin provided evidence that two plasmids, designated phO-53 and phB-35, contained the complete coding sequence of the primary translation product (pre-alpha-lactalbumin). Hybridisation studies using purified human, monkey and guinea-pig alpha-lactalbumin cDNA demonstrated that greater nucleotide sequence divergence has occurred within the rodents than the primates, and that rodent alpha-lactalbumin mRNAs retain regions of homology with primate alpha-lactalbumin mRNAs.  相似文献   

6.
The complete nucleotide sequence of the cDNA insert of the clone pXGL25 derived from the larval beta II-globin mRNA of Xenopus laevis has been determined. The sequence of 593 nucleotides represents part of the 5'nontranslated region, the coding region for 146 amino acids and the entire 3'nontranslated region. It diverges from the related larval beta I-sequence by 24.9% in the coding region. Alignment of the 5' and 3'nontranslated regions of the two related larval beta-sequences to maximum matching resulted in 31.2% and 46.7% divergence, respectively. Divergence between the corresponding adult and larval sequences considerably exceeds that of related larval sequences, suggesting that larval genes may have arisen by gene duplication prior to genome duplication. In contrast to mammalian beta-globin mRNAs, replacement and silent base substitutions are equally abundant, thus indicating less functional constraint on the larval Xenopus laevis beta-globin chains. The larval beta I- and beta II-globins diverge by 30.8% and show most variation in the alpha 1/beta 2-chain interaction sites.  相似文献   

7.
Cattle are the only non-primate species for which expansion of the killer cell immunoglobulin-like receptor (KIR) genes has been reported. We analyzed cattle KIR sequences to determine their relationship to the two divergent lineages of primate KIR: one comprising the KIR3DX1 gene of unknown function, the second comprising all other primate KIR genes, which encode variable major histocompatibility complex class I receptors. Phylogenetics and analysis of repetitive elements shows that cattle KIR subdivide into the same two lineages as primate KIR. Unlike the primates, the lineage of variable and likely functional cattle KIR corresponds to the KIR3DX1 lineage of primate KIR, whereas the variable lineage of primate KIR is represented in cattle by one KIR gene and a related gene fragment.  相似文献   

8.
The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse.  相似文献   

9.
Phylogenetic analyses carried out on cytochrome c oxidase (COX) subunit I mitochondrial genes from 14 primates representing the major branches of the order and four outgroup nonprimate eutherians revealed that transversions and amino acid replacements (i.e., the more slowly occurring sequence changes) contained lower levels of homoplasy and thus provided more accurate information on cladistic relationships than transitions (i.e., the more rapidly occurring sequence changes). Several amino acids, each with a high likelihood of functionality involving the binding of cytochrome c or interaction with COX VIII, have changed in Anthropoidea, the primate suborder grouping New World monkey, Old World monkey, ape, and human lineages. They are conserved in other mammalian lineages and in nonanthropoid primates. Maximum-likelihood ancestral COX I nucleotide sequences were determined utilizing a near most parsimonious branching arrangement for the primate sequences that was consistent with previously hypothesized primate cladistic relationships based on larger and more diverse data sets. Relative rate tests of COX I mitochondrial sequences showed an elevated nonsynonymous (N) substitution rate for anthropoid-nonanthropoid comparisons. This finding for the largest mitochondrial (mt) DNA-encoded subunit is consistent with previous observations of elevated nonsynonymous substitution/synonymous substitution (S) rates in primates for mt-encoded COX II and for the nuclear-encoded COX IV and COX VIIa-H. Other COX-related proteins, including cytochrome c and cytochrome b, also show elevated amino acid replacement rates or N/S during similar time frames, suggesting that this group of interacting genes is likely to have coevolved during primate evolution.  相似文献   

10.
Growth hormone (GH) has been previously described as showing distinct evolutionary stories between primates and other mammals. A burst of changes and successive amplification events took place in the primate lineage giving rise to a multigene family in the three Anthropoidea lineages. Polymerase chain reaction (PCR) was used to obtain the genes and the intergenic regions comprising the GH loci of the spider monkey (Ateles geoffroyi), a New-World primate, and of the chimpanzee (Pan troglodytes), an ape. The intergenic sequences of both species were screened by hybridization to detect copies of the Alu family, which have been implicated in the formation of the human GH locus. The GH locus of the spider monkey contains at least six GH-related genes, four of them were cloned. Likewise, five short intergenic sequences of approximately 3 kb were amplified and cloned. On the other hand, in the chimpanzee four new placental lactogen (PL) genes as well as four intergenic regions were amplified. Consequently, in this ape, six genes (two GHs, previously obtained, and four PLs) are clustered, separated by intergenic sequences of different lengths (two short ones of about 5 kb, and at least two long ones between 9 and 13 kb). The presence of Alu sequences within the intergenic regions of both GH loci corroborates the current hypothesis that they acted as a driving force for the locus expansion. GH sequence comparisons reveal that several gene-conversion events might have occurred during the formation of this genome region, which has undergone independent evolution in the three Anthropoidea branches. To establish the GH's evolutionary history may prove to be a difficult task due to these gene-conversion events.  相似文献   

11.
12.
The chimpanzee and African green monkey insulin genes have been cloned and sequenced. These two sequences together with the previously reported sequences for the human and owl monkey insulin genes provide additional support for the hominoid-rate-slowdown hypothesis, i.e., a slower rate of nucleotide substitution in humans and apes than in monkeys. When these sequences and other primate sequences available for the relative-rate test were considered together, the substitution rate in the Old World monkey lineage was shown to be significantly higher than the rates in the human and chimpanzee lineages. This was true regardless of whether the eta-globin pseudogene was included in the analysis. Therefore, in contrast to the claim by Easteal, the hominoid-rate-slowdown is not unique to the eta-globin pseudogene but appears to be a rather general phenomenon. On average, the substitution rate at silent sites is about 1.5 times higher in the Old World monkey lineage than in the human and chimpanzee lineages.  相似文献   

13.
A new class of lowly repetitive DNA sequences has been detected in the primate genome. The renaturation rate of this sequence class is practically indistinguishable from the renaturation rate of single-copy sequences. Consequently, this lowly repetitive sequence class has not been previously observed in DNA renaturation rate studies. This new sequence class is significant in that it might occupy a major fraction of the primate genome.Based on a study of the thermal stabilities of DNA heteroduplexes constructed from human DNA and either bonnet monkey or galago DNAs, we are able to compare the relative mutation rates of repetitive and single-copy sequences in the primate genome. We find that the mutation rate of short, interspersed repetitive sequences is either less than or approximately equal to the mutation rate of single-copy sequences. This implies that the base sequence of these repetitive sequences is important to their biological function.We also find that numerous mutations have accumulated in interspersed repeated sequences since the divergence of galago and human. These mutations are only recognizable because they occur at specific sites in the repeated sequence rather than at random sites in the sequence. Although interspersed repetitive sequences from human and galago can readily cross-hybridize, these site-specific mutations identify them as being two distinct classes. In contrast, far fewer site-specific mutations have occurred since the divergence of human and monkey.  相似文献   

14.
A new method for detecting site-specific variation of evolutionary rate (the so-called covarion process) from protein sequence data is proposed. It involves comparing the maximum-likelihood estimates of the replacement rate of an amino acid site in distinct subtrees of a large tree. This approach allows detection of covarion at the gene or the amino acid levels. The method is applied to mammalian-mitochondrial-protein sequences. Significant covarion-like evolution is found in the (simian) primate lineage: some amino acid positions are fast-evolving (i.e. unconstrained) in non-primate mammals but slow-evolving (i.e. highly constrained) in primates, and some show the opposite pattern. Our results indicate that the mitochondrial genome of primates reached a new peak of the adaptive landscape through positive selection.  相似文献   

15.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

16.
DNA sequences of the complete cytochrome b gene are shown to contain robust phylogenetic signal for the strepsirrhine primates (i.e., lemurs and lorises). The phylogeny derived from these data conforms to other molecular studies of strepsirrhine relationships despite the fact that uncorrected nucleotide distances are high for nearly all intrastrepsirrhine comparisons, with most in the 15%-20% range. Cytochrome b sequences support the hypothesis that Malagasy lemuriforms and Afro-Asian lorisiforms each comprise clades that share a sister- group relationship. A study (Adkins and Honeycutt 1994) of the cytochrome c oxidase subunit II (COII) gene placed one Malagasy primate (Daubentonia) at the base of the strepsirrhine clade, thereby suggesting a diphyletic Lemuriformes. The reanalysis of COII third- position transversions, either alone or in combination with cytochrome b third-position transversions, however, yields a tree that is congruent with phylogenetic hypotheses derived from cytochrome b and other genetic data sets.   相似文献   

17.
Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating expression may be evolving differently from other noncoding regions.  相似文献   

18.
Sequence length polymorphisms between the amelogenin (AMELX) and the amelogenin-like (AMELY) genes both within and between several mammalian species have been identified and utilized for sex determination, species identification, and to elucidate evolutionary relationships. Sex determination via polymerase chain reaction (PCR) assays of the AMELX and AMELY genes has been successful in greater apes, prosimians, and two species of old world monkeys. To date, no sex determination PCR assay using AMELX and AMELY has been developed for new world monkeys. In this study, we present partial AMELX and AMELY sequences for five old world monkey species (Mandrillus sphinx, Macaca nemestrina, Macaca fuscata, Macaca mulatta, and Macaca fascicularis) along with primer sets that can be used for sex determination of these five species. In addition, we compare the sequences we generated with other primate AMELX and AMELY sequences available on GenBank and discuss sequence length polymorphisms and their usefulness in sex determination within primates. The mandrill and four species of macaque all share two similar deletion regions with each other, the human, and the chimpanzee in the region sequenced. These two deletion regions are 176-181 and 8 nucleotides in length. In analyzing existing primate sequences on GenBank, we also discovered that a separate six-nucleotide polymorphism located approximately 300 nucleotides upstream of the 177 nucleotide polymorphism in sequences of humans and chimps was also present in two species of new world monkeys (Saimiri boliviensis and Saimiri sciureus). We designed primers that incorporate this polymorphism, creating the first AMELX and AMELY PCR primer set that has been used successfully to generate two bands in a new world monkey species.  相似文献   

19.
In these postgenomic times where aspects of functional genetics and character evolution form a focal point of human-mouse comparative research, primate phylogenetic research gained a widespread interest in evolutionary biology. Nevertheless, it also remains a controversial subject. Despite the surge in available primate sequences and corresponding phylogenetic interpretations, primate origins as well as several branching events in primate divergence are far from settled. The analysis of SINEs - short interspersed elements - as molecular cladistic markers represents a particularly interesting complement to sequence data. The following summarizes and discusses potential applications of this new approach in molecular phylogeny and outlines main results obtained with SINEs in the context of primate evolutionary research. Another molecular cladistic marker linking the tarsier with the anthropoid primates is also presented. This eliminates any possibility of confounding phylogenetic interpretations through lineage sorting phenomena and makes use of a new point of view in settling the phylogenetic relationships of the primate infraorders.  相似文献   

20.
Summary Genomic blotting and enzymatic amplification show that the genome of the langur monkey (like that of other primates) contains only a single gene for lysozymec, in contrast to another group of foregut fermenters, the ruminants, which have a multigene family encoding this protein. Therefore, the langur stomach lysozyme gene has probably evolved recently (i.e., within the period of monkey evolution) from a conventional primate lysozyme. The sequences of cDNAs for the stomach lysozyme of langur and the conventional lysozymes of three other Old World monkeys were determined. Identification of the promoter for the stomach gene and comparison to the human gene, which is expressed conventionally in macrophages, show that both lysozyme genes use the same promoter. This suggests that the difference in expression patterns is due to change(s) in enhancer or silencer regulatory elements. With the cDNA sequences the hypothesis that the langur stomach lysozyme has converged in amino acid sequence upon the stomach lysozymes of ruminants is tested. Consistent with the convergence hypothesis, only those sites that specify amino acids in the mature lysozyme are shared uniquely with ruminant lysozyme genes. None of the silent sites at third positions of codons or in noncoding regions support a link between the langur and ruminants. Statistical analysis based on silent sites rules out the possibility of horizontal transfer of a stomach lysozyme gene between the langur and ruminant lineages and supports the close relationship of the langur lysozyme gene to that of other monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号