首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Ishfaq  K Maeta  S Maeda  T Natsume  A Ito  M Yoshida 《FEBS letters》2012,586(19):3236-3241
Eukaryotic translation initiation factor 5A (eIF5A) is a protein subject to hypusination, which is essential for its function. eIF5A is also acetylated, but the role of that modification is unknown. Here, we report that acetylation regulates the subcellular localization of eIF5A. We identified PCAF as the major cellular acetyltransferase of eIF5A, and HDAC6 and SIRT2 as its major deacetylases. Inhibition of the deacetylases or impaired hypusination increased acetylation of eIF5A, leading to nuclear accumulation. As eIF5A is constitutively hypusinated under physiological conditions, we suggest that reversible acetylation plays a major role in controlling the subcellular localization of eIF5A.  相似文献   

2.
The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance.  相似文献   

3.
The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 murine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice.  相似文献   

4.
López Ribera I  Puigdomènech P 《Gene》1999,240(2):1649-359
The maize genomic DNA sequence encoding the eukaryotic translation initiation factor 5 (eIF-5) has been isolated from genomic library of maize seedlings and the exon–intron structure determined (accession number AJ132240). The length of genomic DNA sequenced was about 7 kb and contained two exons with the translation start site in exon 2. The only intron is located in the non-coding 5′ region and it is 1298 bp long with the splice acceptor and donor sites conforming to the AG/GT rules. Repetitive sequence fragments are located in the 5′ and 3′ intergenic region. The accumulation of eIF-5 mRNA was studied by RNA blot and in situ hybridization. The observed distribution of mRNA may correlate with the function of the protein, as it appears to be highly abundant in tissues where the proportion of cells actively dividing is very high, such as meristematic regions.  相似文献   

5.
In this study, we aimed to study the effect of miR-33b in regulating sensitivity to daunorubicin (DNR) in acute myelocytic leukemia (AML). We used quantitative real-time polymerase chain reaction and Cell Counting Kit-8 assay to detect the level of miR-33b and cell viability. Cell apoptosis and the expression of eIF5A-2 and MCL-1 protein were detected by flow cytometry analysis and Western Blot analysis, respectively. MiR-33b mimic increased sensitivity of AML cells against DNR, while miR-33b inhibitor had the opposite effect. Furthermore, the results showed that the eIF5A-2 gene was a direct target of miR-33b, and miR-33b regulated eIF5A-2 mRNA and protein expression. Silencing of eIF5A-2 by RNA interference increased the sensitivity of AML cells against DNR. We also found that MCL-1 contributed to the regulation of DNR sensitivity, which was dependent on downregulation of eIF5A-2. Finally, knockdown of eIF5A-2 eliminated the effects of miRNA-33b mimic or inhibitor on DNR sensitivity. These findings indicate that miR-33b maybe as a new therapeutic target in AML cells.  相似文献   

6.
Summary. In the past years, the attention of scientists has mainly focused on the study of the genetic information and alterations that regulate eukaryotic cell proliferation and that lead to neoplastic transformation. An increasing series of data are emerging about the involvement of the initiation phase of translational processes in the control of cell proliferation. In this paper we review the novel insights on the biochemical and molecular events leading to the initiation and its involvement in cell proliferation and tumourigenesis. We describe the structure, regulation and proposed functions of the eukaryotic initiation factor 5A (eIF-5A) focusing the attention on its involvement in the regulation of apoptosis and cell proliferation. Moreover, we describe the modulation of its activity (through the reduction of hypusine synthesis) in apoptosis induced either by tissue transglutaminase or interferon α. Finally, we propose eIF-5A as an additional target of anti-cancer strategies. Received July 28, 2000 Accepted September 30, 2000  相似文献   

7.
A pollen-specific sequence, NeIF-4A8, has been isolated from a cDNA library from mature pollen of Nicotiana tabacum cv. Samsun. NeIF-4A8 is a full-length cDNA whose deduced amino acid sequence exhibits high homology to the eucaryotic translation initiation factor eIF-4A from mouse, Drosophila and tobacco. eIF-4A is an RNA helicase which belongs to the supergene family of DEAD-box proteins. Northern blot analysis with a gene-specific probe showed strict anther-specific expression of NeIF-4A8 starting at microspore mitosis. With antibodies raised against tobacco eIF-4A the presence of abundant eIF-4A-related proteins in developing anthers and pollen grains was demonstrated. The genomic analysis shows that the coding region is split by three introns whereas a large, fourth intron is situated in the 5-untranslated region. A promoter construct with 2137 bp of upstream sequence fused to the GUS reporter gene was used to confirm that the expression is confined to the haploid cells within the anther. NeIF-4A8 is a prime candidate for mediating translational control in the developing male gametophyte.  相似文献   

8.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse biological processes. We cloned novel small RNA from human mesenchymal stem cells (hMSCs) and termed microRNA-5787 (hsa-miR-5787) that met the criteria for a miRNA. The level of miR-5787 was elevated in senescent fibroblasts. Based on the target prediction algorithm and results that were obtained, we find that eukaryotic translation initiation factor 5 (eIF5) is a target of miR-5787. Similar to the over-expression of miR-5787, we showed that repression of eIF5 in fibroblasts negatively affected cell growth. Therefore, we propose that the miR-5787 represses cell growth, in part, by targeting eIF5.  相似文献   

9.
During eukaryotic translation initiation, the 43 S ribosomal pre-initiation complex scans the mRNA in search of an AUG codon at which to begin translation. Start codon recognition halts scanning and triggers a number of events that commit the complex to beginning translation at that point on the mRNA. Previous studies in vitro and in vivo have indicated that eukaryotic initiation factors (eIFs) 1, 2 and 5 play key roles in these events. In addition, it was reported recently that the C-terminal domain of eIF1A is involved in maintaining the fidelity of start codon recognition. The molecular mechanisms by which these factors work together to ensure fidelity of start site selection remain poorly understood. Here, we report the quantitative characterization of energetic interactions between eIF1A, eIF5 and the AUG codon in an in vitro reconstituted yeast translation initiation system. Our results show that recognition of an AUG codon by the 43 S complex triggers an interaction between eIF5 and eIF1A, resulting in a shift in the equilibrium between two states of the pre-initiation complex. This AUG-dependent change may be a reorganization from a scanning-competent state to a scanning-incompetent state. Mutations in both eIF1A and eIF5 that increase initiation at non-AUG codons in vivo weaken the interaction between the two factors upon AUG recognition, while specifically strengthening it in response to a UUG codon. These data suggest strongly that the interaction between eIF1A and eIF5 is involved in maintaining the fidelity of start codon recognition in vivo.  相似文献   

10.
Eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential for eukaryotic cell proliferation and is the only protein containing hypusine, [Nε-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine. eIF5A also undergoes an acetylation at specific Lys residue(s). In this study, we have investigated the effect of hypusine modification and acetylation on the subcellular localization of eIF5A. Immunocytochemical analyses showed differences in the distribution of non-hypusinated eIF5A precursor and the hypusine-containing mature eIF5A. While the precursor is found in both cytoplasm and nucleus, the hypusinated eIF5A is primarily localized in cytoplasm. eIF5A mutant proteins, defective in hypusine modification (K50A, K50R) were localized in a similar manner to the eIF5A precursor, whereas hypusine-modified mutant proteins (K47A, K47R, K68A) were localized mainly in the cytoplasm. These findings provide strong evidence that the hypusine modification of eIF5A dictates its localization in the cytoplasmic compartment where it is required for protein synthesis.  相似文献   

11.
Pan1 is an actin patch-associated protein involved in endocytosis. Our studies revealed that in oleate-grown cells Pan1 is located in the nucleus as well as in patches. One of three putative nuclear localization signals (NLS) of Pan1, NLS2, directed beta-galactosidase (beta-gal) to the nucleus. However, GFP-Pan1(886-1219), containing NLS2, was found in the cytoplasm indicating that it may contain a nuclear export signal (NES). A putative Pan1 NES, overlapping with NLS3, re-addressed NLS(H2B)-NES/NLS3-beta-gal from the nucleus to the cytoplasm. Inactivation of the NES allowed NLS3 to be effective. Thus, Pan1 contains functional NLSs and a NES and appears to shuttle in certain circumstances.  相似文献   

12.
13.
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Here we demonstrate that an RNA aptamer selected against eukaryotic initiation factor 4A (eIF4A) serves as an efficient biosensor. The aptamer, when immobilized to resin, purifies eIF4A from crude cell extracts by affinity pull-down, and 32P-labeled aptamer can detect some 300 ng of eIF4A by dot-blot analysis. Moreover, by use of an aptamer-immobilized sensor chip, we developed a surface plasmon resonance assay to detect eIF4A at the nanogram level within whole cell lysates after optimizing sample preparation, thereby showing a real-time sensor for eIF4A in cell extract solution.  相似文献   

14.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid formed post-translationally in two steps by deoxyhypusine synthase and deoxyhypusine hydroxylase. Genes encoding eIF5A or deoxyhypusine synthase are essential for cell survival and proliferation. To determine the physiological function of eIF5A, we have employed the tandem affinity purification (TAP) method and mass spectrometry to search for and identify the potential eIF5A-interacting proteins. The TAP-tag was fused in-frame to chromosomal TIF51A gene and eIF5A-TAP fusion protein expressed at its natural level was used as the bait to fish out its interacting partners. At salt concentrations of 150 mM, deoxyhypusine synthase was the only protein bound to eIF5A. As salt concentrations were lowered to 125 mM or less, eIF5A interacted with a set of proteins, which were identified as the components of the 80S ribosome complex. The eIF5A-ribosome interaction was sensitive to RNase and EDTA treatments, indicating the requirement of RNA and the joining of 40S and 60S ribosomal subunits for the interaction. Importantly, a single mutation of hypusine to arginine completely abolished the eIF5A-ribosome interaction. Sucrose gradient sedimentation analysis of log versus stationary phase cells and eIF3 mutant strain showed that the endogenous eIF5A co-sedimented with the actively translating 80S ribosomes and polyribosomes in an RNase- and EDTA-sensitive manner. Our study demonstrates for the first time that eIF5A interacts in a hypusine-dependent manner with a molecular complex rather than a single protein, suggesting that the essential function of eIF5A is mostly likely mediated through its interaction with the actively translating ribosomes.  相似文献   

15.
Amino acid sequencing and mass spectrometry revealed identity of a human nuclear matrix protein, termed hNMP 265, with a predicted protein of gene KIAA0111. Two-dimensional electrophoresis and Northern hybridization showed the protein to ubiquitously occur in various human cell types. Exhibiting DEAD-box motifs characteristic for RNA helicases, hNMP 265 is highly similar to the human initiation factors eIF4A-I and -II. On the other hand, hNMP 265 greatly differs from the initiation factors by a N-terminal sequence rich in charged amino acids. Sequence searches and alignments indicate proteins related to hNMP 265 in other eukaryotes. Chimeras between hNMP 265 and green fluorescence protein or hapten appeared as speckles in extranucleolar regions in the nucleus, but not in the cytoplasm. Experiments with tagged deletion mutants indicated that the N-terminal amino acid sequence is necessary for nuclear localization. A putative role of hNMP 265 in pre-mRNA processing is discussed.  相似文献   

16.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure–function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aΔ tif51bΔ) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.  相似文献   

17.
Viral infection usually influences cellular protein synthesis either actively or passively via modification of various translation initiation factors. Here we demonstrated that infection with avian reovirus (ARV) interfered with cellular protein synthesis. This study demonstrated for the first time that ARV influenced the phosphorylation of translation initiation factors including eIF4E and eIF-4G. Interestingly, ARV also induced phosphorylation of eukaryotic translation elongation factor (eEF2) in a time- and dose-dependent manner. Inhibition of mTOR by rapamycin notably increased the level of phosphorylated eEF2 in infected cells. However, rapamycin did not show any negative effects on ARV replication, suggesting that phosphorylation of eEF2 in infected cells did not reduce ARV propagation. These results demonstrated for the first time that ARV promotes phosphorylation of eEF2 which in turn influenced host protein production not simply by modulating the function of translation initiation factors but also by regulating elongation factor eEF2.  相似文献   

18.
Two distinct cDNAs encoding protein synthesis initiation factor 4A (eIF-4A) were isolated from an Arabidopsis thaliana cDNA library and sequenced. The deduced amino acid sequences from the two cDNAs were compared to eIF-4A from tobacco, mouse and Saccharomyces cerevisiae. The putative ATP-binding sites and RNA helicase motifs were identified.  相似文献   

19.
20.
Two distinct cDNAs encoding protein synthesis initiation factor 4A (eIF-4A) were isolated from an Arabidopsis thaliana cDNA library and sequenced. The deduced amino acid sequences from the two cDNAs were compared to eIF-4A from tobacco, mouse and Saccharomyces cerevisiae. The putative ATP-binding sites and RNA helicase motifs were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号