首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of chimeric 9-mer oligonucleotides containing methylphosphonate-linkages and locked nucleic acid (LNA) monomers, their binding affinity towards complementary DNA and RNA, and their 3′-exonucleolytic stability are described. The obtained methylphosphonate-DNA/LNA chimeric oligonucleotides display similarly high RNA affinity and RNA selectivity as a corresponding 9-mer DNA/LNA chimeric oligonucleotide, but much higher resistance towards 3′-exonucleolytic degradation.  相似文献   

2.
A dual-probe containing pyrenylmethyl amino-LNA has been developed for sensitive mismatch detection. While hybridization with complementary DNA/RNA results in very strong excimer signals, exposure to singly mismatched DNA/RNA targets results in significantly decreased excimer emission.  相似文献   

3.
4.
Synthesis of an oligonucleotide containing one methylphosphonate locked nucleic acid (LNA) thymine monomer using the phosphoramidite approach is described. The binding affinity of this 9-mer methylphosphonate LNA towards complementary DNA and RNA oligonucleotides was increased compared to the reference DNA, but decreased compared to the reference LNA. In the 9-mer sequence context studied, introduction of a single methylphosphonate LNA monomer, contrary to a single LNA monomer, efficiently inhibits 3'-exonucleolytic degradation.  相似文献   

5.
Design of LNA probes that improve mismatch discrimination   总被引:4,自引:3,他引:1  
Locked nucleic acids (LNA) show remarkable affinity and specificity against native DNA targets. Effects of LNA modifications on mismatch discrimination were studied as a function of sequence context and identity of the mismatch using ultraviolet (UV) melting experiments. A triplet of LNA residues centered on the mismatch was generally found to have the largest discriminatory power. An exception was observed for G–T mismatches, where discrimination decreased when the guanine nucleotide at the mismatch site or even the flanking nucleotides were modified. Fluorescence experiments using 2-aminopurine suggest that LNA modifications enhance base stacking of perfectly matched base pairs and decrease stabilizing stacking interactions of mismatched base pairs. LNAs do not change the amount of counterions (Na+) that are released when duplexes denature. New guidelines are suggested for design of LNA probes, which significantly improve mismatch discrimination in comparison with unmodified DNA probes.  相似文献   

6.
LNA: a versatile tool for therapeutics and genomics   总被引:21,自引:0,他引:21  
  相似文献   

7.
Locked nucleic acid (LNA) and 2'-O-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3'-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target-probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.  相似文献   

8.
The synthesis of a diaminopurine PNA monomer, N-[N6-(benzyloxycarbonyl)-2,6-diaminopurine-9-yl] acetyl-N-(2-t-butyloxycarbonylaminoethyl)glycine, and the incorporation of this monomer into PNA oligomers are described. Substitution of adenine by diaminopurine in PNA oligomers increased the T m of duplexes formed with complementary DNA, RNA or PNA by 2.5-6.5 degrees C per diaminopurine. Furthermore, discrimination against mismatches facing the diaminopurine in the hybridizing oligomer is improved. Finally, a homopurine decamer PNA containing six diaminopurines is shown to form a (gel shift) stable strand displacement complex with a target in a 246 bp double-stranded DNA fragment.  相似文献   

9.
The thermal stabilities of the duplexes formed between 4'-thio-modified oligodeoxynucleotides and their DNA and RNA complementary strands were determined and compared with those of the corresponding unmodified oligodeoxynucleotides. A 16mer oligodeoxynucleotide containing 10 contiguous 4'-thiothymidylate modifications formed a less stable duplex with the DNA target (deltaTm/modification -1.0 degrees C) than the corresponding unmodified oligodeoxynucleotide. However, when the same oligodeoxynucleotide was bound to the corresponding RNA target, a small increase in Tm was observed (deltaTm/modification +0.16 degrees C) when compared with the unmodified duplex. A study to identify the specificity of an oligodeoxynucleotide containing a 4'-thiothymidylate modification when forming a duplex with DNA or RNA containing a single mismatch opposite the modification found the resulting Tms to be almost identical to the wild-type duplexes, demonstrating that the 4'-thio-modification in oligodeoxynucleotides has no deleterious effect on specificity. The nuclease stability of 4'-thio-modified oligodeoxynucleotides was examined using snake venom phosphodiesterase (SVPD) and nuclease S1. No significant resistance to degradation by the exonuclease SVPD was observed when compared with the corresponding unmodified oligodeoxynucleotide. However, 4'-thio-modified oligodeoxynucleotides were found to be highly resistant to degradation by the endonuclease S1. It was also demonstrated that 4'-thio-modified oligodeoxynucleotides elicit Escherichia coli RNase H hydrolysis of the RNA target only at high enzyme concentration.  相似文献   

10.
The interactions of oligonucleotide analogs, 12-mers, which contain deoxyribo- or 2'-O-methylribose sugars and methylphosphonate internucleotide linkages with complementary 12-mer DNA and RNA targets and the effect of chirality of the methylphosphonate linkage on oligomer-target interactions was studied. Oligomers containing a single Rp or Sp methylphosphonate linkage (type 1) or oligomers containing a single phosphodiester linkage at the 5'-end followed by 10 contiguous methylphosphonate linkages of random chirality (type 2) were prepared. The deoxyribo- and 2'-O-methylribo- type 1 12-mers formed stable duplexes with both the RNA and DNA as determined by UV melting experiments. The melting temperatures, Tms, of the 2'-O-methylribo-12-mer/RNA duplexes (49-53 degrees C) were higher than those of the deoxyribo-12mer/RNA duplexes (31-36 degrees C). The Tms of the duplexes formed by the Rp isomers of these oligomers were approximately 3-5 degrees C higher than those formed by the corresponding Sp isomers. The deoxyribo type 2 12-mer formed a stable duplex, Tm 34 degrees C, with the DNA target and a much less stable duplex with the RNA target, Tm < 5 degrees C. In contrast, the 2'-O-methylribo type 2 12-mer formed a stable duplex with the RNA target, Tm 20 degrees C, and a duplex of lower stability with the DNA target, Tm < 5 degrees C. These results show that the previously observed greater stability of oligo-2'-O-methylribonucleotide/RNA duplexes versus oligodeoxyribonucleotide/RNA duplexes extends to oligomers containing methylphosphonate linkages and that the configuration of the methylphosphonate linkage strongly influences the stability of the duplexes.  相似文献   

11.
McTigue PM  Peterson RJ  Kahn JD 《Biochemistry》2004,43(18):5388-5405
The design of modified nucleic acid probes, primers, and therapeutics is improved by considering their thermodynamics. Locked nucleic acid (LNA) is one of the most useful modified backbones, with incorporation of a single LNA providing a substantial increase in duplex stability. In this work, the hybridization DeltaH(o), DeltaS(o), and melting temperature (T(M)) were measured from absorbance melting curves for 100 duplex oligonucleotides with single internal LNA nucleotides on one strand, and the results provided DeltaDeltaH(o), DeltaDeltaS(o), DeltaDelta, and DeltaT(M) relative to reference DNA oligonucleotides. LNA pyrimidines contribute more stability than purines, especially A(L), but there is substantial context dependence for each LNA base. Both the 5' and 3' neighbors must be considered in predicting the effect of an LNA incorporation, with purine neighbors providing more stability. Enthalpy-entropy compensation in DeltaDeltaH(o) and DeltaDeltaS(o) is observed across the set of sequences, suggesting that LNA can stabilize the duplex by either preorganization or improved stacking, but not both simultaneously. Singular value decomposition analysis provides predictive sequence-dependent rules for hybridization of singly LNA-substituted DNA oligonucleotides to their all-DNA complements. The results are provided as sets of DeltaDeltaH(o), DeltaDeltaS(o), and DeltaDelta parameters for all 32 of the possible nearest neighbors for LNA+DNA:DNA hybridization (5' MX(L) and 5' X(L)N, where M, N, and X = A, C, G, or T and X(L) represents LNA). The parameters are applicable within the standard thermodynamic prediction algorithms. They provide T(M) estimates accurate to within 2 degrees C for LNA-containing oligonucleotides, which is significantly better accuracy than previously available.  相似文献   

12.
Vester B  Wengel J 《Biochemistry》2004,43(42):13233-13241
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. Structural studies have shown that LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The wide applicability of LNA oligonucleotides for gene silencing and their use for research and diagnostic purposes are documented in a number of recent reports, some of which are described herein.  相似文献   

13.
LNA is a bicyclic nucleic acid analogue that contains one or more 2'-O,4'-C methylene linkage(s), which effectively locks the furanose ring in a C3'-endo conformation. We report here the NMR solution structure of a nonamer LNA:RNA hybrid and a structural characterization of a nonamer LNA:DNA hybrid, where the LNA strands are composed entirely of LNA nucleotides. This is the first structural characterization of fully modified LNA oligonucleotides. The high-resolution structure reveals that the LNA:RNA hybrid adopts an almost canonical A-type duplex morphology. The helix axis is almost straight and the duplex geometry is regular. This shows that fully modified LNA oligomers can hybridize with complementary RNA and form duplexes within the Watson-Crick framework. The LNA:DNA hybrid structurally resembles an RNA:DNA hybrid as shown by determination of deoxyribose sugar puckers and analysis of NOESY NMR spectra.  相似文献   

14.
LNA (Locked Nucleic Acids) is a novel oligonucleotide analogue containing a conformationally restricted nucleotide with a 2'-O, 4'-C-methylene bridge that induces unprecedented thermal affinities when mixed with complementary single stranded DNA and RNA. We have used two-dimensional 1H NMR spectroscopy obtained at 750 and 500 MHz to determine a high resolution solution structure of an LNA oligonucleotide hybridized to the complementary DNA strand. The determination of the structure was based on a complete relaxation matrix analysis of the NOESY cross peaks followed by restrained molecular dynamics calculations. Forty final structures were generated for the duplex from A-type and B-type dsDNA starting structures. The root-mean-square deviation (RMSD) of the coordinates for the forty structures of the complex was 0.32A. The structures were analysed by use of calculated helix parameters. This showed that the values for rise and buckle in the LNA duplex is markedly different from canonical B-DNA at the modification site. A value of twist similar to A-DNA is also observed at the modification site. The overall length of the helix which is 27.3 A. The average twist over the sequence are 35.9 degrees +/- 0.3 degrees. Consequently, the modification does not cause the helix to unwind. The bis-intercalation of the thiazole orange dye TOTO to the LNA duplex was also investigated by 1H NMR spectroscopy to sense the structural change from the unmodified oligonucleotide. We observed that the bis-intercalation of TOTO is much less favourable in the 5'-CT(L)AG-3' site than in the unmodified 5'-CTAG-3' site. This was related to the change in the base stacking of the LNA duplex compared to the unmodified duplex.  相似文献   

15.
Hughesman CB  Turner RF  Haynes CA 《Biochemistry》2011,50(23):5354-5368
Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° < 0) in the entropy gain accompanying the helix-to-coil transition, with the magnitude of the reduction dependent on the type of nucleobase and its base pairing properties. This knowledge and our average measured value for ΔC(p) of 42 ± 11 cal mol(-1) K(-1) bp(-1) are then used to derive a new model that accurately predicts melting thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.  相似文献   

16.
The beta-cyanoethyl phosphosphoramidite derivatives of 6-methyl- and 6-methoxymethyl-3-(2-deoxy-beta-D-ribofuranosyl)-3H-pyrrolo[2,3-d]pyrimidin-2-one have been synthesized. These monomers have been employed for oligodeoxynucleotide synthesis to evaluate their effect on duplex stability and ability to fluorometrically report on hybridization. The structurally conservative 6-methoxymethyl-substitution results in a pyrrolocytidine that is stabilizing toward hybrid formation (Delta Tm = +1.3 degrees C) whereas the known 6-methylpyrrolocytidine is destabilizing (Delta Tm = -4.7 degrees C), in the sequence examined. The 6-methoxymethylpyrrolocytidine retains excellent mismatch discrimination and its fluorescence is selectively quenched when hybridized to a match oligodeoxynucleotide sequence. The quenching of fluorescence for an internal position is approximately three-fold, whereas a terminal position (5'-end or 3'-end) experienced approximately two-fold decrease in the fluorescence intensity.  相似文献   

17.
We have used 2D NMR spectroscopy to study the sugar conformations of oligonucleotides containing a conformationally restricted nucleotide (LNA) with a 2'-O, 4'-C-methylene bridge. We have investigated a modified 9-mer single stranded oligonucleotide as well as three 9- and 10-mer modified oligonucleotides hybridized to unmodified DNA. The single-stranded LNA contained three modifications whereas the duplexes contained one, three and four modifications, respectively. The LNA:DNA duplexes have normal Watson-Crick base-pairing with all the nucleotides in anti-conformation. By use of selective DQF-COSY spectra we determined the ratio between the N-type (C3'-endo) and S-type (C2'-endo) sugar conformations of the nucleotides. In contrast to the corresponding single-stranded DNA (ssDNA), we found that the sugar conformations of the single-stranded LNA oligonucleotide (ssLNA) cannot be described by a major S-type conformer of all the nucleotides. The nucleotides flanking an LNA nucleotide have sugar conformations with a significant population of the N-type conformer. Similarly, the sugar conformations of the nucleotides in the LNA:DNA duplexes flanking a modification were also shown to have significant contributions from the N-type conformation. In all cases, the sugar conformations of the nucleotides in the complementary DNA strand in the duplex remain in the S-type conformation. We found that the locked conformation of the LNA nucleotides both in ssLNA and in the duplexes organize the phosphate backbone in such a way as to introduce higher population of the N-type conformation. These conformational changes are associated with an improved stacking of the nucleobases. Based on the results reported herein, we propose that the exceptional stability of the LNA modified duplexes is caused by a quenching of concerted local backbone motions (preorganization) by the LNA nucleotides in ssLNA so as to decrease the entropy loss on duplex formation combined with a more efficient stacking of the nucleobases.  相似文献   

18.
Locked nucleic acids (LNAs) are synthetic nucleic acid analogs that bind to complementary target molecules (DNA, RNA or LNA) with very high affinity. At the same time, this binding affinity is decreased substantially when the hybrids thus formed contain even a single mismatched base pair. We have exploited these properties of LNA probes to develop a new method for single nucleotide polymorphism genotyping. In this method, very short (hexamer or heptamer) LNA probes are labeled with either rhodamine or hexachlorofluorescein (HEX), and their hybridization to target DNAs is followed by measuring the fluorescence polarization (FP) of the dyes. The formation of perfectly complementary double-stranded hybrids gives rise to significant FP increases, whereas the presence of single mismatches results in very small or no changes of this parameter. Multiplexing of the assay can be achieved by using differentially labeled wild-type and mutant specific probes in the same solution. The method is homogeneous, and because of the use of extremely short LNA probes, the generation of a universal set of genotyping reagents is possible.  相似文献   

19.
Synthesis of a 9-mer alpha-L-LNA (alpha-L-ribo configured locked nucleic acid) containing three 9-(2-O,4-C-methylene-alpha-L-ribofuranosyl)adenine nucleotide monomer(s) has been accomplished. The work involved synthesis of the bicyclic adenine nucleoside via a condensation reaction between L-threo-pentofuranose derivative 1 and 6-N-benzoyladenine followed by C2'-epimerization. Hybridization studies demonstrated very strong duplex formation with 9-mer complementary DNA, RNA, LNA and alpha-L-LNA target sequences.  相似文献   

20.
A series of sequences of the DNA analog bicyclo-DNA, 6-12 nucleotides in length and containing all four natural nucleobases, were prepared and their Watson-Crick pairing properties with complementary RNA and DNA, as well as in its own series, were analyzed by UV-melting curves and CD-spectroscopy. The results can be summarized as follows: bicyclo-DNA forms stable Watson-Crick duplexes with complementary RNA and DNA, the duplexes with RNA generally being more stable than those with DNA. Pyrimidine-rich bicyclo-DNA sequences form duplexes of equal or slightly increased stability with DNA or RNA, whereas purine-rich sequences show decreased affinity to complementary DNA and RNA when compared with wild-type (DNA-DNA, DNA-RNA) duplexes. In its own system, bicyclo-DNA prefers antiparallel strand alignment and strongly discriminates for base mismatches. Duplexes are always inferior in stability compared with the natural ones. A detailed analysis of the thermodynamic properties was performed with the sequence 5'-GGATGGGAG-3'x 5'-CTCCCATCC-3' in both backbone systems. Comparison of the pairing enthalpy and entropy terms shows an enthalpic advantage for DNA association (delta deltaH = -18 kcal x (mol)-1)) and an entropic advantage for bicyclo-DNA association (delta deltaS = 49 cal x K(-1) x mol(-1), leading to a delta deltaG 25 degrees C of -3.4 kcal x mol(-1) in favor of the natural duplex. The salt dependence of Tm for this sequence is more pronounced in the case of bicyclo-DNA due to increased counter ion screening from the solvent. Furthermore bicyclo-DNA sequences are more stable towards snake venom phosphodiesterase by a factor of 10-20, and show increased stability in fetal calf serum by a factor of 8 compared with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号