首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA recombination in animal and plant viruses.   总被引:55,自引:1,他引:54       下载免费PDF全文
An increasing number of animal and plant viruses have been shown to undergo RNA-RNA recombination, which is defined as the exchange of genetic information between nonsegmented RNAs. Only some of these viruses have been shown to undergo recombination in experimental infection of tissue culture, animals, and plants. However, a survey of viral RNA structure and sequences suggests that many RNA viruses were derived form homologous or nonhomologous recombination between viruses or between viruses and cellular genes during natural viral evolution. The high frequency and widespread nature of RNA recombination indicate that this phenomenon plays a more significant role in the biology of RNA viruses than was previously recognized. Three types of RNA recombination are defined: homologous recombination; aberrant homologous recombination, which results in sequence duplication, insertion, or deletion during recombination; and nonhomologous (illegitimate) recombination, which does not involve sequence homology. RNA recombination has been shown to occur by a copy choice mechanism in some viruses. A model for this recombination mechanism is presented.  相似文献   

2.
Y Li  L A Ball 《Journal of virology》1993,67(7):3854-3860
During sequential replicative passages of viral RNA from the nodavirus flock house virus, spontaneous deletion of RNA sequences occurred frequently. Families of deleted RNA molecules were derived from both segments of the bipartite viral genome and found to contain single, double, or triple deletions. These deletions were attributed to template switching by the flock house virus RNA replicase, resulting in recombination between distant sequences and excision of the intervening nucleotides. From sequence analysis of the recombination junctions, we concluded that the process of template switching was influenced by both the primary sequence and the secondary structure of the RNA and that it occurred predominantly during synthesis of RNA negative strands.  相似文献   

3.
Genomic RNA encapsidation in lentiviruses is a highly selective and regulated process. The unspliced RNA molecules are selected for encapsidation from a pool of many different viral and cellular RNA species. Moreover, two molecules are encapsidated per viral particle, where they are found associated as a dimer. In this study, we demonstrate that a 10-nucleotide palindromic sequence (pal) located at the 3' end of the psi encapsidation signal is critical for human immunodeficiency virus type 2 (HIV-2) replication and affects genomic RNA encapsidation. We used short-term and long-term culture of pal-mutated viruses in permissive C8166 cells and their phenotypic reversion to show the existence of a structurally extended SL1 during HIV-2 replication, formed by the interaction of the 3' end of the pal within psi with a motif located downstream of SL1. The stem extending HIV-2 SL1 is structurally similar to stem B described for HIV-1 SL1. Despite the high degree of phylogenetic conservation, these results show that mutant viruses are viable when the autocomplementary nature of the pal sequence is disrupted, but not without a stable stem B. Our observations show that formation of the extended SL1 is necessary during viral replication and positively affects HIV-2 genomic RNA encapsidation. Sequestration of part of the packaging signal into SL1 may be a means of regulating its presentation during the replication cycle.  相似文献   

4.
5.
Studies on the molecular mechanism of genetic recombination in RNA viruses have progressed at the time when experimental systems of efficient recombination crossovers were established. The system of brome mosaic virus (BMV) represents one of the most useful and most advanced tools for investigation of the molecular aspects of the mechanism of RNA-RNA recombination events. By using engineered BMV RNA components, the occurrence of both homologous and nonhomologous crosses were demonstrated among the segments of the BMV RNA genome. Studies show that the two types of crossovers require different RNA signal sequences and that both types depend upon the participation of BMV replicase proteins. Mutations in the two BMV-encoded replicase polypeptides (proteins 1a and 2a) reveal that their different regions participate in homologous and in nonhomologous crossovers. Based on all these data, it is most likely that homologous and nonhomologous recombinant crosses do occur via two different types of template switching events (copy-choice mechanism) where viral replicase complex changes RNA templates during viral RNA replication at distinct signal sequences. In this review we discuss various aspects of the mechanism of RNA recombination in BMV and we emphasize future projections of this research.  相似文献   

6.
One of the most unusual features of RNA viruses is their enormous genetic variability. Among the different processes contributing to the continuous generation of new viral variants RNA recombination is of special importance. This process has been observed for human, animal, plant and bacterial viruses. The collected data reveal a great susceptibility of RNA viruses to recombination. They also indicate that genetic RNA recombination (especially the nonhomologous one) is a major factor responsible for the emergence of new viral strains or species. Although the formation and accumulation of viral recombinants was observed in numerous RNA viruses, the molecular basis of this phenomenon was studied in only a few viral species. Among them, brome mosaic virus (BMV), a model (+)RNA virus offers the best opportunities to investigate various aspects of genetic RNA recombination in vivo. Unlike any other, the BMV-based system enables homologous and nonhomologous recombination studies at both the protein and RNA levels. As a consequence, BMV is the virus for which the structural requirements for genetic RNA recombination have been most precisely established. Nevertheless, the previously proposed model of genetic recombination in BMV still had one weakness: it could not really explain the role of RNA structure in nonhomologous recombination. Recent discoveries concerning the latter problem give us a chance to fill this gap. That is why in this review we present and thoroughly discuss all results concerning nonhomologous recombination in BMV that have been obtained until now.  相似文献   

7.
CVI cells were transfected with oversized simian virus 40 (SV40) genomes that could be reduced to packageable size by alternative homologous recombination pathways involving either two polydeoxyguanylic-thymidylic acid X polydeoxycytidylic-adenylic acid (poly[d(GT).d(CA)]; abbreviated hereafter as poly(GT)] tracts or two tracts of homologous SV40 sequence. Plaque-forming viruses rescued by this procedure were found to contain genomes formed by homologous and nonhomologous recombination events. Half of the viable viral DNA molecules recovered were the result of recombination between two tracts of poly(GT). Approximately 20% of the rescued viral genomes were produced by homologous recombination between tracts of SV40 DNA. Nonhomologous recombination involving SV40 sequences was also a major pathway of deletion, producing ca. 30% of the viral plaques. Tracts of poly(GT) generated by recombination were variable in length, suggesting that recombination between poly(GT) tracts was usually unequal. On a per-nucleotide basis, poly(GT) recombination occurred eight times more frequently than did recombination between homologous SV40 DNA. This eightfold difference is the maximum recombinatory enhancement attributable to poly(GT) sequences. Although DNA sequence analysis showed that tracts of poly(GT) generated by recombination retained the alternating G-T repeat motif throughout their length, the contribution of the nonhomologous pathway to poly(GT) recombination cannot be ruled out, and the relative proclivity of a given length of d(GT).d(CA) sequence to undergo homologous recombination is probably less than eight times greater than that of an SV40 sequence of the same length.  相似文献   

8.
Homologous and nonhomologous recombination in monkey cells.   总被引:52,自引:23,他引:29       下载免费PDF全文
Though recombinational events are important for the proper functioning of most cells, little is known about the frequency and mechanisms of recombination in mammalian cells. We have used simian virus 40 (SV40)-pBR322 hybrid plasmids constructed in vitro as substrates to detect and quantitate intramolecular homologous and nonhomologous recombination events in cultured monkey cells. Excision of wild-type or defective SV40 DNAs by recombination from these plasmids was scored by the viral plaque assay, in either the absence or the presence of DNA from a temperature-sensitive helper virus. Several independent products of homologous and nonhomologous recombination have been isolated and characterized at the DNA sequence level. We find that neither DNA replication of the recombination substrate nor SV40 large T antigen is essential for either homologous or nonhomologous recombination involving viral or pBR322 sequences.  相似文献   

9.
Construction of adenovirus vectors through Cre-lox recombination.   总被引:19,自引:0,他引:19       下载免费PDF全文
Two barriers prevent adenovirus-based vectors from having wide application. One is the difficulty of making new adenoviruses, and the second is the strong immunological reaction to viral proteins. Here we describe uses of Cre-lox recombination to overcome these problems. First, we demonstrate a simple method for constructing E1-substituted adenoviruses. Second, we demonstrate a method to construct adenovirus vectors carrying recombinant genes in place of all of the viral genes, so-called gutless adenovirus vectors. The pivotal feature in each method is the use of a negatively selected adenovirus named psi5. We engineered a cis-acting selection into psi5 by flanking its packaging site with loxP sites. When psi5 was grown in cells making a high level of Cre recombinase, the packaging site was deleted by recombination and the yield of psi5 was reduced to 5% of the wild-type level. To make a new E1-substituted virus, we used psi5 as a donor virus and recombined it with a shuttle vector via a loxP site. The resulting recombinant virus has a single loxP site next to the packaging site and therefore outgrows psi5 in the presence of Cre recombinase. To make a gutless virus, we used psi5 as a helper virus. The only viral sequences included in the gutless vector are those needed in cis for its replication and packaging. We found that a loxP site next to the packaging site of the gutless virus was necessary to neutralize homologous recombination between psi5 and the gutless viruses within their packaging domains.  相似文献   

10.
M Sakalian  J W Wills    V M Vogt 《Journal of virology》1994,68(9):5969-5981
In all retrovirus systems studied, the leader region of the RNA contains a cis-acting sequence called psi that is required for packaging the viral RNA genome. Since the pol and env genes are dispensable for formation of RNA-containing particles, the gag gene product must have an RNA binding domain(s) capable of recognizing psi. To gain information about which portion(s) of Gag is required for RNA packaging in the avian sarcoma and leukemia virus system, we utilized a series of gag deletion mutants that retain the ability to assemble virus-like particles. COS cells were cotransfected with these mutant DNAs plus a tester DNA containing psi, and incorporation of RNA into particles were measured by RNase protection. The efficiency of packaging was determined by normalization of the amount of psi+ RNA to the amount of Gag protein released in virus-like particles. Specificity of packaging was determined by comparisons of psi+ and psi- RNA in particles and in cells. The results indicate that much of the MA domain, much of the p10 domain, half of the CA domain, and the entire PR domain of Gag are unnecessary for efficient packaging. In addition, none of these deleted regions is needed for specific selection of the psi RNA. Deletions within the NC domain, as expected, reduce or eliminate both the efficiency and the specificity of packaging. Among mutants that retain the ability to package, a deletion within the CA domain (which includes the major homology region) is the least efficient. We also examined particles of the well-known packaging mutant SE21Q1b. The data suggest that the random RNA packaging behavior of this mutant is not due to a specific defect but rather is the result of the cumulative effect of many point mutations throughout the gag gene.  相似文献   

11.
RNA packaging signals (psi) from the 5' ends of murine and avian retroviral genomes have previously been shown to direct encapsidation of heterologous mRNA into the retroviral virion. The avian 5' packaging region has now been further characterized, and we have defined a 270-nucleotide sequence, A psi, which is sufficient to direct packaging of heterologous RNA. Identification of the A psi sequence suggests that several retroviral cis-acting sequences contained in psi+ (the primer binding site, the putative dimer linkage sequence, and the splice donor site) are dispensable for specific RNA encapsidation. Subgenomic env mRNA is not efficiently encapsidated into particles, even though the A psi sequence is present in this RNA. In contrast, spliced heterologous psi-containing RNA is packaged into virions as efficiently as unspliced species; thus splicing per se is not responsible for the failure of env mRNA to be encapsidated. We also found that an avian retroviral mutant deleted for both nucleocapsid Cys-His boxes retains the capacity to encapsidate RNA containing psi sequences, although this RNA is unstable and is thus difficult to detect in mature particles. Electron microscopy reveals that virions produced by this mutant lack a condensed core, which may allow the RNA to be accessible to nucleases.  相似文献   

12.
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.  相似文献   

13.
Gallei A  Orlich M  Thiel HJ  Becher P 《Journal of virology》2005,79(22):14261-14270
Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses.  相似文献   

14.
Isolating the core functional elements of an RNA is normally performed during the characterization of a new RNA in order to simplify further biochemical analysis. The removal of extraneous sequence is challenging and can lead to biases that result from the incomplete sampling of deletion variants. An impartial solution to this problem is to construct a library containing a large number of deletion constructs and to select functional RNA isolates that are at least as efficient as their full-length progenitors. Here, we use nonhomologous recombination and selection to isolate the catalytic core of a pyrimidine nucleotide synthase ribozyme. A variable-length pool of approximately 10(8) recombinant molecules that included deletions, inversions, and translocations of a 271-nucleotide-long ribozyme isolate was constructed by digesting and randomly religating its DNA genome. In vitro selection for functional ribozymes was then performed in a size-dependent and a size-independent manner. The final pools had nearly equivalent catalytic rates even though their length distributions were completely different, indicating that a diverse range of deletion constructs were functionally active. Four short sequence islands, requiring as little as 81 nt of sequence, were found within all of the truncated ribozymes and could be folded into a secondary structure consisting of three helix-loops. Our findings suggest that nonhomologous recombination is a highly efficient way to isolate a ribozyme's core motif and could prove to be a useful method for evolving new ribozyme functions from pre-existing sequences in a manner that may have played an important role early in evolution.  相似文献   

15.
16.
Recombinant forms of human immunodeficiency virus type 1 (HIV-1) have been shown to be of major importance in the global AIDS pandemic. Viral RNA dimer formation mediated by the dimerization initiation sequence (DIS) is believed to be essential for viral genomic RNA packaging and therefore for RNA recombination. Here, we demonstrate that HIV-1 recombination and replication are not restricted by variant DIS loop sequences. Three DIS loop forms found among HIV-1 isolates, DIS (CG), DIS (TA), and DIS (TG), when introduced into deletion mutants of HIV-1 recombined efficiently, and the progeny virions replicated with comparable kinetics. A fourth DIS loop form, containing an artificial AAAAAA sequence disrupting the putative DIS loop-loop interactions [DIS (A6)], supported efficient recombination with DIS loop variants; however, DIS (A6) progeny virions exhibited a modest replication disadvantage in mixed cultures. Our studies indicate that the nonhomologous DIS sequences found in different HIV-1 subtypes are not a primary obstacle to intersubtype recombination.  相似文献   

17.
18.
From analysis of the large RNase T1-resistant oligonucleotides of Kirsten sarcoma virus (Ki-SV), a physical map of the virus genome was deduced. Kirsten murine leukemia virus (Ki-MuLV) sequences were detected in T1 oligonucleotides closest to the 3' end of the viral RNA and extended approximately 1,000 nucleotides into the genome. The rat genetic sequences started at this point and extended all the way to the very 5' end of the RNA molecules, where a small stretch of Ki-MuLV sequence was detected. By comparison of the fingerprints of Ki-SV RNA and the RNA of the endogenous rat src genetic sequences, it was found that more than 50% of the T1 oligonucleotides were similar between Ki-SV and the endogenous rat src RNA, suggesting an identical primary nucleotide sequence in over 50% of the viral genomes. The results indicate that Ki-SV arose by recombination between the 5' and 3' ends of Ki-MuLV and a large portion of the homologous sequences of the endogenous rat src RNA.  相似文献   

19.
20.
Shapka N  Nagy PD 《Journal of virology》2004,78(5):2288-2300
RNA recombination can be facilitated by recombination signals present in viral RNAs. Among such signals are short sequences with high AU contents that constitute recombination hot spots in Brome mosaic virus (BMV) and retroviruses. In this paper, we demonstrate that a defective interfering (DI) RNA, a model template associated with Tomato bushy stunt virus (TBSV), a tombusvirus, undergoes frequent recombination in plants and protoplast cells when it carries the AU-rich hot spot sequence from BMV. Similar to the situation with BMV, most of the recombination junction sites in the DI RNA recombinants were found within the AU-rich region. However, unlike BMV or retroviruses, where recombination usually occurred with precision between duplicated AU-rich sequences, the majority of TBSV DI RNA recombinants were imprecise. In addition, only one copy of the AU-rich sequence was essential to promote recombination in the DI RNA. The selection of junction sites was also influenced by a putative cis-acting element present in the DI RNA. We found that this RNA sequence bound to the TBSV replicase proteins more efficiently than did control nonviral sequences, suggesting that it might be involved in replicase "landing" during the template switching events. In summary, evidence is presented that a tombusvirus can use the recombination signal of BMV. This supports the idea that common AU-rich recombination signals might promote interviral recombination between unrelated viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号