首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bdellovibrio bacteriovorus is a species of unique obligate predatory bacteria that utilize gram-negative bacteria as prey. Their life cycle alternates between a motile extracellular phase and a growth phase within the prey cell periplasm. The mechanism of prey cell invasion and the genetic networks and regulation during the life cycle have not been elucidated. The obligate predatory nature of the B. bacteriovorus life cycle suggests the use of this bacterium in potential applications involving pathogen control but adds complexity to the development of practical genetic systems that can be used to determine gene function. This work reports the development of a genetic technique for allelic exchange or gene inactivation by construction of in-frame markerless deletion mutants including the use of a counterselectable marker in B. bacteriovorus. A suicide plasmid carrying the sacB gene for counterselection was used to inactivate the strB gene in B. bacteriovorus HD100 by an in-frame deletion. Despite the inactivation of the strB gene, B. bacteriovorus was found to retain resistance to high concentrations of streptomycin. The stability of a plasmid for use in complementation experiments was also investigated, and it was determined that pMMB206 replicates autonomously in B. bacteriovorus. Development of this practical genetic system now facilitates the study of B. bacteriovorus at the molecular level and will aid in understanding the regulatory networks and gene function in this fascinating predatory bacterium.  相似文献   

3.
4.
Bdellovibrio bacteriovorus is a predatory bacterium that is capable of invading a number of gram-negative bacteria. The life cycle of this predator can be divided into a nonreproductive phase outside the prey bacteria and a multiplication phase in their periplasm. It was suggested that during the reproduction phase, B. bacteriovorus reutilizes unmodified components of the prey's cell wall. We therefore examined the outer membranes of B. bacteriovorus strains HD100 (DSM 50701) and HD114 (DSM 50705) by using Escherichia coli, Yersinia enterocolitica, and Pseudomonas putida as prey organisms. The combined sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analyses revealed novel and innate major outer membrane proteins (OMPs) of B. bacteriovorus strains. An incorporation of prey-derived proteins into the cell wall of B. bacteriovorus was not observed. The corresponding genes of the B. bacteriovorus strains were elucidated by a reverse-genetics approach, and a leader peptide was deduced from the gene sequence and confirmed by Edman degradation. The host-independent mutant strain B. bacteriovorus HI100 (DSM 12732) growing in the absence of prey organisms possesses an OMP similar to the major OMPs of the host-dependent strains. The similarity of the primary structure of the OMPs produced by the three Bdellovibrio strains is between 67 and 89%. The leader peptides of all OMPs have a length of 20 amino acids and are highly conserved. The molecular sizes of the mature proteins range from 34.9 to 37.6 kDa. Secondary-structure predictions indicate preferential alpha-helices and little beta-barrel structures.  相似文献   

5.
6.
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.  相似文献   

7.
Pseudomonas stutzeri lives in terrestrial and aquatic habitats and is capable of natural genetic transformation. After transposon mutagenesis, transformation-deficient mutants were isolated from a P. stutzeri JM300 strain. In one of them a gene which coded for a protein with 75% amino acid sequence identity to PilC of Pseudomonas aeruginosa, an accessory protein for type IV pilus biogenesis, was inactivated. The presence of type IV pili was demonstrated by susceptibility to the type IV pilus-dependent phage PO4, by occurrence of twitching motility, and by electron microscopy. The pilC mutant had no pili and was defective in twitching motility. Further sequencing revealed that pilC is clustered in an operon with genes homologous to pilB and pilD of P. aeruginosa, which are also involved in pilus formation. Next to these genes but transcribed in the opposite orientation a pilA gene encoding a protein with high amino acid sequence identity to pilin, the structural component of type IV pili, was identified. Insertional inactivation of pilA abolished pilus formation, PO4 plating, twitching motility, and natural transformation. The amounts of (3)H-labeled P. stutzeri DNA that were bound to competent parental cells and taken up were strongly reduced in the pilC and pilA mutants. Remarkably, the cloned pilA genes from nontransformable organisms like Dichelobacter nodosus and the PAK and PAO strains of P. aeruginosa fully restored pilus formation and transformability of the P. stutzeri pilA mutant (along with PO4 plating and twitching motility). It is concluded that the type IV pili of the soil bacterium P. stutzeri function in DNA uptake for transformation and that their role in this process is not confined to the species-specific pilin.  相似文献   

8.
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.  相似文献   

9.
To investigate the role of type IV pili in the virulence of phytopathogenic bacteria, four mutant strains for pilus biogenesis-related genes were generated in Pseudomonas syringae pv. tabaci 6605. PilA encodes the pilin protein as a major subunit of type IV pili, and the pilO product is reported to be required for pilus assembly. The fimU and fimT genes are predicted to produce minor pilins. Western blot analysis revealed that pilA, pilO, and fimU mutants but not the fimT mutant failed to construct type IV pili. Although the swimming motility of all mutant strains was not impaired in liquid medium, they showed remarkably reduced motilities on semisolid agar medium, suggesting that type IV pili are required for surface motilities. Virulence toward host tobacco plants and hypersensitive response-inducing ability in nonhost Arabidopsis leaves of pilA, pilO, and fimU mutant strains were reduced. These results might be a consequence of reduced expression of type III secretion system-related genes in the mutant strains. Further, all mutant strains showed enhanced expression of resistance-nodulation-division family members mexA, mexB, and oprM, and higher tolerance to antimicrobial compounds. These results indicate that type IV pili are an important virulence factor of this pathogen.  相似文献   

10.
Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.  相似文献   

11.
The social gliding behaviour of Myxococcus xanthus has previously been associated with the presence of polar pili. A Tn 5 transposon insertion was isolated which introduces a defect in social gliding and is genetically linked to a known sgl locus; this insertion was found also to cause a piliation defect. A 2.7 kb section of DNA was isolated from either side of this transposon and sequenced, revealing three genes which encode amino acid sequences with substantial similarity to components of the Type IV pilus biogenesis pathway in Pseudomonas aeruginosa . The myxococcal pilA gene encodes a putative pilin precursor with a short signal sequence and processing site similar to those of other Type IV pilins. Myxococcal pilS and pilR encode amino acid sequences with similarity to PilS and PilR of P. aeruginosa , as well as to other members of the NtrB/C family of two-component regulators. Mutations within pilR and pilA that have no polar effect were demonstrated to be responsible for pilus and social motility defects. These results indicate that the pili of M. xanthus belong to the Type IV family of pili, and demonstrate that these pili are actually required for social motility.  相似文献   

12.
The extreme thermophile Thermus thermophilus HB27 exhibits high frequencies of natural transformation. Although we recently reported identification of the first competence genes in Thermus, the molecular basis of DNA uptake is unknown. A pilus-like structure is assumed to be involved. Twelve genes encoding prepilin-like proteins were identified in three loci in the genome of T. thermophilus. Mutational analyses, described in this paper, revealed that one locus, which contains four genes that encode prepilin-like proteins (pilA1 to pilA4), is essential for natural transformation. Additionally, comZ, a new competence gene with no similarity to known genes, was identified. Analysis of the piliation phenotype revealed wild-type piliation of a pilA1-pilA3Deltakat mutant and a comZ mutant, whereas a pilA4 mutant was found to be completely devoid of pilus structures. These findings, together with the significant similarity of PilA4 to prepilins, led to the conclusion that the T. thermophilus pilus structures are type IV pili. Furthermore, the loss of the transformation and piliation phenotype in the pilA4 mutant suggests that type IV pili are implicated in natural transformation of T. thermophilus HB27.  相似文献   

13.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

14.
Bdellovibrio bacteriovorus are Gram-negative bacteria that prey upon other Gram-negative bacteria, including some pathogens, in a wide variety of habitats including soil, sewage, marine and estuarine environments. In order to facilitate studies on predation by this organism, we have developed a method that assays killing of luminescent Escherichia coli by B. bacteriovorus. Moreover, we have used this assay to compare predation of cells by derivatives of B. bacteriovorus containing targeted mutations in genes we have identified. Two genes are described; one, mcp2, encoding a methyl-accepting chemotaxis protein (MCP) and the other, an mviN homologue. Bdellovibrio bacteriovorus mcp2::aphII were less efficient predators on luminescent E. coli than B. bacteriovorus containing a randomly inserted aphII gene via TnphoA transposition. These and other chemotaxis experiments implicated at least a minor role for chemotaxis in predation by B. bacteriovorus. They also open the way for further studies on Bdellovibrio ecology, genomics and predator-prey interactions. The results further confirm that Bdellovibrio uses a chemotaxis system in order to sense, and respond to, changes in its environment, including prey.  相似文献   

15.
16.
Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B. bacteriovorus HD100 doses in poultry with a normal gut microbiota or predosed with a colonizing Salmonella strain. In both cases, Bdellovibrio was dosed orally along with antacids. After dosing non-Salmonella-infected birds with Bdellovibrio, we measured the health and well-being of the birds and any changes in their gut pathology and culturable microbiota, finding that although a Bdellovibrio dose at 2 days of age altered the overall diversity of the natural gut microbiota in 28-day-old birds, there were no adverse effects on their growth and well-being. Drinking water and fecal matter from the pens in which the birds were housed as groups showed no contamination by Bdellovibrio after dosing. Predatory Bdellovibrio orally administered to birds that had been predosed with a gut-colonizing Salmonella enterica serovar Enteritidis phage type 4 strain (an important zoonotic pathogen) significantly reduced Salmonella numbers in bird gut cecal contents and reduced abnormal cecal morphology, indicating reduced cecal inflammation, compared to the ceca of the untreated controls or a nonpredatory ΔpilA strain, suggesting that these effects were due to predatory action. This work is a first step to applying Bdellovibrio therapeutically for other animal, and possibly human, infections.  相似文献   

17.
Bdellovibrio bacteriovorus are predatory bacteria that penetrate Gram-negative bacteria and grow intraperiplasmically at the expense of the prey. It was suggested that B. bacteriovorus partially degrade and reutilize lipopolysaccharide (LPS) of the host, thus synthesizing an outer membrane containing structural elements of the prey. According to this hypothesis a host-independent mutant should possess a chemically different LPS. Therefore, the lipopolysaccharides of B. bacteriovorus HD100 and its host-independent derivative B. bacteriovorus HI100 were isolated and characterized by SDS-polyacrylamide gel electrophoresis, immunoblotting, and mass spectrometry. LPS of both strains were identified as smooth-form LPS with different repeating units. The lipid As were isolated after mild acid hydrolysis and their structures were determined by chemical analysis, by mass spectrometric methods, and by NMR spectroscopy. Both lipid As were characterized by an unusual chemical structure, consisting of a beta-(1-->6)-linked 2,3-diamino-2,3-dideoxy-d-glucopyranose disaccharide carrying six fatty acids that were all hydroxylated. Instead of phosphate groups substituting position O-1 of the reducing and O-4' of the nonreducing end alpha-d-mannopyranose residues were found in these lipid As. Thus, they represent the first lipid As completely missing negatively charged groups. A reduced endotoxic activity as determined by cytokine induction from human macrophages was shown for this novel structure. Only minor differences with respect to fatty acids were detected between the lipid As of the host-dependent wild type strain HD100 and for its host-independent derivative HI100. From the results of the detailed analysis it can be concluded that the wild type strain HD100 synthesizes an innate LPS.  相似文献   

18.
The human pathogen Eikenella corrodens expresses type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying pilus structure and function in the clinical isolate E. corrodens VA1. Earlier work defined the pilA locus which includes pilA1, pilA2, pilB, and hagA. Both pilA1 and pilA2 predict a type IV pilin, whereas pilB predicts a putative pilus assembly protein. The role of hagA has not been clearly established. That work also confirmed that pilA1 encodes the major pilus protein in this strain and showed that the phase variation involves a posttranslational event in pilus formation. In this study, the function of the individual genes comprising the pilA locus was examined using a recently developed protocol for targeted interposon mutagenesis of S-phase variant VA1-S1. Different pilA mutants were compared to S-phase and L-phase variants for several distinct aspects of phase variation and type IV pilus biosynthesis and function. S-phase cells were characterized by surface pili, competence for natural transformation, and twitching motility, whereas L-phase cells lacked these features. Inactivation of pilA1 yielded a mutant that was phenotypically indistinguishable from L-phase variants, showing that native biosynthesis of the type IV pilus in strain VA1 is dependent on expression of pilA1 and proper export and assembly of PilA1. Inactivation of pilA2 yielded a mutant that was phenotypically indistinguishable from S-phase variants, indicating that pilA2 is not essential for biosynthesis of functionally normal pili. A mutant inactivated for pilB was deficient for twitching motility, suggesting a role for PilB in this pilus-related phenomenon. Inactivation of hagA, which may encode a tellurite resistance protein, had no effect on pilus structure or function.  相似文献   

19.
20.
The extreme thermophile Thermus thermophilus HB27 exhibits high frequencies of natural transformation. Although we recently reported identification of the first competence genes in Thermus, the molecular basis of DNA uptake is unknown. A pilus-like structure is assumed to be involved. Twelve genes encoding prepilin-like proteins were identified in three loci in the genome of T. thermophilus. Mutational analyses, described in this paper, revealed that one locus, which contains four genes that encode prepilin-like proteins (pilA1 to pilA4), is essential for natural transformation. Additionally, comZ, a new competence gene with no similarity to known genes, was identified. Analysis of the piliation phenotype revealed wild-type piliation of a pilA1-pilA3Δkat mutant and a comZ mutant, whereas a pilA4 mutant was found to be completely devoid of pilus structures. These findings, together with the significant similarity of PilA4 to prepilins, led to the conclusion that the T. thermophilus pilus structures are type IV pili. Furthermore, the loss of the transformation and piliation phenotype in the pilA4 mutant suggests that type IV pili are implicated in natural transformation of T. thermophilus HB27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号